透過您的圖書館登入
IP:3.145.8.42
  • 學位論文

氧化鋅奈米片的製備及其在染料敏化太陽能電池之應用

Fabrication of ZnO nanosheets and their application in dye-sensitized solar cells

指導教授 : 余琬琴

摘要


氧化鋅是常用於製作染敏太陽能電池的陽極材料之一。氧化鋅的能帶結構與二氧化鈦相似,但擁有較大的電子遷移率,且能形成多種奈米結構。本研究以電化學沉積法製備二維氧化鋅奈米片結構,並將其製成染料敏化太陽能電池的工作電極。探討的因子包括鍛燒溫度、鍛燒時間與膜厚,鍛燒溫度有高低二個不同的溫度,即400℃和150℃,高溫鍛燒的時間固定為1小時,低溫鍛燒的時間則是從1 至36小時。 研究結果顯示,電化學沉積所得的奈米片是由氧化鋅前驅物構成,該奈米片大多直立於基板上,且相互連結形成網狀結構。經高溫鍛燒(400℃、1小時)後,該前驅物轉化成氧化鋅,而且奈米片上出現許多微小的孔洞。此多孔結構具有高的比表面積,而且直立的奈米片利於電子的傳輸,適合應用於染料敏化太陽能電池。結果顯示氧化鋅薄膜厚度對電池效率有顯著的影響,在膜厚為27 μm時,電池效率可達2.91%。 在低溫鍛燒方面,為了決定最佳的鍛燒時間,我們先固定膜厚(15 μm),變化鍛燒時間。結果顯示最佳低溫鍛燒時間為24小時,在此薄膜厚度(15 μm)下,光電轉換效率可達3.34%。接著,我們固定鍛燒時間(24小時),改變膜厚。結果顯示,最佳膜厚為21 μm,光電轉換效率可達3.84%。未來可望將此低溫製程應用於軟性基板,製成可撓式染敏太陽能電池。

並列摘要


Many studies have already been reported on the use of ZnO nanostructures for the fabrication of photoanodes for dye-sensitized solar cells (DSSCs). ZnO is a wide-band-gap semiconductor similar to TiO2, but has higher electronic mobility and can be produced in a wide variety of nanostructures. In this study ZnO nanoporous films were prepared by using the electrochemical deposition method and fabricated into DSSC photoanodes. The as-deposited films were composed of precursor nanosheets and required a calcination process to convert the precursor into ZnO before dye adsorption. The factors investigated included calcination temperature, calcination time and film thickness. Two different calcination temperatures were used, i.e., 400℃and 150℃. The calcination time at 400℃ was maintained at 1 hour, while the calcination time at 150℃ was varied from 1 to 36 hours. The results show that the as-deposited precursor nanosheets were roughly vertically aligned with the glass substrate and formed a connecting network with space between them. Calcination at 400℃for 1 h not only converted the precursor into ZnO, but also generated numerous through pores on the nanosheets. Such a structure should be favorable for photoanode construction, because the porous nanosheets provide a relatively large surface area for dye adsorption, and the vertically standing nanosheets give a direct conduction pathway for electron transport. The film thickness of ZnO was found to have a significant effect on the performance of the resulting DSSCs. Peak conversion efficiency of 2.91 % was obtained with a film thickness of 27 μm. In order to determine the optimal calcination time at 150℃, the calcination time was varied from 1 to 36 h, while the thickness of the ZnO nanoporous film was maintained at 15 μm. A calcination time of 24 h was found to be optimal, and the highest conversion efficiency achieved with the 15 μm film was 3.34%. In order to further improve the conversion efficiency, the effect of film thickness on cell efficiency was investigated. The highest conversion efficiency of 3.84% was obtained at a film thickness of 21 μm.

參考文獻


62. 黃懿弘,染料敏化太陽能電池氧化鋅工作電極的電化學沉積研究,碩士論文,國立台北科技大學,台北, 2009。
45. 李威德, 電沉積氧化鋅薄膜應用在染料敏化太陽能電池之研究,碩士論文,國立台北科技大學,台北, 2009。
11. J. Nelson, The Physics of Solar Cells, Imperial College Press;Distributed by World Scientific Pub. Co., London River Edge, 2003.
2. Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, “ZnO Nanostructures for Dye-Sensitized Solar Cells”, Adv. Mater., 21, 2009, 4087–4108.
3. H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y. Tsai and W. F. Hsieh,“Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications”, J. Phys. Chem. C, 112, 2008, 16359–16364.

被引用紀錄


陳碧怡(2014)。電化學沉積法製備氧化鋅奈米片應用於染料敏化太陽能電池之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2014.00614
林峻民(2012)。電化學沉積氧化鋅薄膜應用於可撓式染料敏化太陽能電池之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00628
徐仕杰(2013)。電化學合成階層式氧化鋅奈米片/奈米複合結構應用於染料敏化太陽 能電池之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1308201309392600
張家彬(2014)。電化學沉積氧化鋅奈米結構應用於染料敏化太陽能電池之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2108201414052700

延伸閱讀