透過您的圖書館登入
IP:54.147.110.47
  • 學位論文

平面顯示器電路層用鋁鈧系列合金濺鍍靶材之顯微結構分析及其薄膜特性研究

Microstructure Analysis And Sputtering Thin Film Properties of Al-Sc Alloys Target for FPD Interconnect Application

指導教授 : 陳志恆
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


應用於大尺寸化製程技術之液晶平面顯示器驅動電路層電極與導線材料用的鋁合金靶材需具備導電率高,與SiO2或玻璃等材料之附著性佳,耐電致遷移能力佳,可抑制空洞(void)與濺鍍凸起小丘(hillock)形成,並易於鍍膜化和價格便宜等要求;因此結合靶材之真空熔煉製程與合金材料系統之開發設計,以開發具有高純度、尺寸大型化、一體成型與可回收性等要求之鑄鍛型低價格TFT-LCD電路層材料用的鋁合金濺鍍靶材製程與合金系統即為本論文之研究目的與重點。 本文主要在探討不同鈧元素含量添加對二元鋁-鈧合金濺鍍靶材與添加第三元素銣對鋁-1wt%鈧合金濺鍍靶材之顯微組織,析出相組成成份與相變態行為及其濺鍍薄膜之電性質、熱性質、光學性質與薄膜表面狀態的影響。研究結果並進一步與現有商用之鋁-銣合金靶材系統作一比較。研究結果顯示微量合金元素鈧對於Al-Sc合金靶材而言為一有效之晶粒細化劑與調質劑,結果顯示添加微量鈧之鋁合金靶其在真空熔煉鑄造後其靶材晶粒尺寸均勻,大小可控制在50μm以下,且鑄造後之顯微組織為一具微細Al3Sc析出相均勻分佈之熱穩定性佳與清淨度高之等軸晶結構。而在濺鍍薄膜之性質研究方面,添加鈧之Al-Sc合金系統薄膜其對於濺鍍凸起小丘(hillock)之抑制效果明顯優於商用之Al-Nd合金系統。另外在薄膜之電性質研究結果上顯示添加鈧之Al-Sc合金系統薄膜,其再經退火熱處理後電阻係數皆可降低至4μΩcm以下,已符合平面顯示器中大尺寸之電阻係數要求值(<10μΩcm)。但此合金薄膜之電阻係數值會隨Sc含量增加而上昇,當Sc含量添加超過1.5wt%時,合金薄膜之電阻係數有明顯較大幅度增加之趨勢。另外在光學反射率之量測結果顯示當Sc含量添加≦1.5wt%時,退火熱處理前後Al-Sc合金薄膜之反射率在可見光波段之範圍內其反射率整體平均皆可達83%以上,由此證明添加微量鈧之Al-Sc合金靶材適合應用於鍍製光電平面顯示器驅動電路層材料或光電元件用高反射率金屬膜層。

並列摘要


Aluminum alloy are currently being considered as terget materials for large scale LCD to prepare driving circuit layers or interconnection. This type of target material requires to possess some properties such as high conductivity, good adhesion to adjacent layers, resistance to electromigration and hillocks, controllable deposition, as well as low cost etc. Therefore, the goal of this study is to develop a novel type wrought aluminum target, utilized in the TFT-LCD circuit layers or interconnection materials field, that possess some advantageous characteristics such as high purity, whole unity forming, large scale, and recyclable. These characteristics can be achieved by combination of vacuum melting process and subsequently hot working process as well as alloying system design. This study aims to investigate the effect of scandium content or 0.5 wt% rubidium on the microstructure, precipitates composition, phase transformation, and sputtering thin film characterization (i.e., electric properties, thermal properties optical properties, and surface morphology) of the binary Al-Sc alloys and ternary Al-1wt%Sc-0.5wt%Nd alloy sputtered targets, respectively. Experimental results were compared with the results of a commercial Al-Nd alloy target. The experimental data indicate that the transition element scandium is an effective grain refiner and modifier for the Al-Sc alloy targets. The effect of adding minor Sc on the microstructure of the as-cast Al-Sc targets shows that the grain size can be controlled below 50μm and have a uniform size after vacuum melting process. Microstructure analysis and phase characterizations indicates that the Al-Sc alloy targets have an high purity matrix with an fine equiaxed grain structure as well as a fine and high thermal stability precipitates, Al3Sc, is uniformly dispersed in the matrix after casting. The thin film characterization of the Al-Sc alloys is summarized as follows: (i) Al alloy films containing scandium shows an excellent resistance to hillock formation. The effect in suppressing the hillock formation of the Al-Sc alloys system films is superior to the commercial Al-Nd alloy film. (ii) The measurement results of electrical resistivity show that the residual resistivity of the Al-Sc alloys films decreases below a value, 4μΩcm, after annealing treatment at temperature above 300 C, and the value is remarkably low as compared with 10μΩcm, which is the electrical resistivity requirement for large scale TFT-LCD. The electrical resistivity of Al-Sc alloys films increases with increasing scandium element content. Especially, the electrical resistivity substantially increases at scandium content to exceed 1.5wt%. (iii) The optical reflectivity of Al-Sc alloy thin films with the scandium below 1.5wt% is about 83% at visible light band before and after annealing treatment. The experimental evidences shows that the Al-Sc type alloy targets and their sputtering film are very suitable as interconnections of TFT-LCD driving circuits or as high reflectivity metal film of photoelectric devices.

參考文獻


95. J. D. Robson, M. J. Jones and P. B. Pragnell: Acta Mater., 2003, 51, 1453–1468.
53. A. Choudhury, in: Vacuum Metalluegy, ASM International, USA, 1990.
61. Jorge Otubo, Odair Dona’ Rigo, Carlos de Moura Neto, Michael Joseph Kaufman, Paulo Roberto Mei, Materials Research 7(2)(2004)263.
4. Z. H. Li, G. Y. Wu, Y. Gu, W. R. Chen, and Y. Y. Wang, J. Vac. Sci. Technol. A 14(5)(1996)2693.
96. C. Tan, Z. Zheng and B. Wang: Proc. 3rd Int. Conf. On ‘Aluminium alloys’, Vol. I, NTH, Trondheim, Norway, June 1992, 290–294.

被引用紀錄


林修齊(2010)。平面顯示器黑色矩陣用鉻金屬濺鍍靶材之顯微結構分析及薄膜特性研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841%2fNTUT.2010.00462

延伸閱讀