透過您的圖書館登入
IP:18.221.145.52
  • 學位論文

應用鎢薄膜直接成長一維氧化鎢奈米材料之研究

Direct Growth of One-Dimensional Tungsten Oxide Nanomaterials on Tungsten Thin Film

指導教授 : 蘇程裕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究使用直流磁控濺鍍製程配合紅外線加熱爐退火處理並通入反應氣體(Ar:O2),分別探討在不同的濺鍍功率(30~100W)、退火溫度(550~750℃) 、退火時間(10~120min)對於產物的形貌、相態及結構的影響。研究中發現,濺鍍薄膜片電阻值隨著工作距離從12cm減小至4cm而急遽下降至5.42Ω/□;調控工作壓力與濺鍍功率則可改善薄膜的結晶性與導電性,所得到鎢薄膜最低片電阻值為1.17Ω/□,薄膜同時具有良好的附著性。退火製程隨著濺鍍功率(30~100W)、退火溫度(550~750℃)的不同,薄膜會開始成核成長逐漸轉變為一維奈米結構,而且隨著生成時間(10~60min)的增加,一維奈米結構的數量也會逐漸增多,長度最高可達100nm。微結構分析得知,所製備的氧化鎢奈米棒為W18O49相態,晶格成長方向是延著(010)及(103)晶面成長,並由HRTEM的結果得知晶格間距(d-spacing)為0.378nm及0.373nm,與XRD結果相符。成長機制可透過固-固相(Solid-Solid transformation, S-S)法解釋。

並列摘要


In this study, we focused on the effect of deposition parameters including sputtering power (30~100W), annealing temperature (550~750℃) and annealing time (10~120min) on the morphology, phase identification and microstructure of tungsten oxide thin films. It is shown that the sheet resistance of tungsten thin films deeply decline to 5.42Ω/□ when the working distance decrease from 12cm to 4cm. This implies that a decrease in the sheet resistance of the tungsten thin films with good adhesion strongly depends on the crystallinity of the film, which correlates with the sputtering power and the working pressure. In this study, we get the lowest sheet resistance is 1.17Ω/□. The tungsten thin films are synthesized to transform into an one-dimensional structure of tungsten oxide using annealing treatment of 550~750℃ with different sputtering power (30~100W). In addition, the increase tendency of length and quantity in one-dimensional structure of tungsten oxide nanorods also enhance when the growth time increases from 10min to 60min. From microstructure analysis, the W18O49 nanorods grow with a preferred orientation along the (010) and (103) plane. Meanwhile, the d-spacing of 0.378nm and 0.373nm are identified by HRTEM, which can be explained from the Solid-Solid transformative growth mechanism.

參考文獻


[58] 郭奕成,碳化鎢(WCX)與氧化鎢(WOX)奈米線之製備及特性研究與感測器結構之應用設計,碩士論文,國立成功大學電機系微電子工程研究所,台南,2006。
[46] M. -H. Cho, S. A. Park, K. -D. Yang, I. W. Lyo, K. Jeong, S. K. Kang, D. -H. Ko, K. W. Kwon, J. H. Ku, S. Y. Choi and H. J. Shin, “Evolution of tungsten-oxide whiskers synthesized by a rapid thermal-annealing treatment ,” American Vacuum Society B , vol. 22, no. 3,2004, pp.1084-1087.
[5] P. M. Woodward and A. W. Sleight, “Ferroelectric tungsten trioxide,” Journal of Solid State Chemistry, vol. 131, no. 1, 1997, pp. 9-17.
[6] K. Huang, Q. Pan, F. Yang, S. Ni and D. He, “The catalyst-free synthesis of large-area tungsten oxide nanowire arrays on ITO substrate and field emission properties,” Materials Research Bulletin, vol. 43 no. 4, 2008, pp. 919-925.
[7] J. Wang, P. S. Lee and J. Ma, “Synthesis, growth mechanism and room-temperature blue luminescence emission of uniform WO3 nanosheets with W as starting material,” Journal of Crystal Growth, vol. 311, no. 2, 2009, pp. 316–319.

延伸閱讀