透過您的圖書館登入
IP:44.204.34.64
  • 學位論文

重金屬銅、鎳對活性污泥活性之影響─以大武崙工業區污水處理廠為例

Effect of copper and nickel on activity of activated sludge – case study of tawulun industrial wastewater treatment plant

指導教授 : 李志源 陳孝行
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究選擇一工業區之實廠作為範例,檢測該廠曝氣池中活性污泥比攝氧率(SOUR),並探討環境因子、有機物(以化學需氧量表示,COD)、與重金屬濃度Cu、Ni對比攝氧率(SOUR)之影響。研究目的在釐清現場活性污泥比攝氧率(SOUR)之變化,以及受這些因素之影響情況。所得結果可實際應用於改善處理廠之操作及研擬進流水毒性物質之管制作業。 實驗方法係對廠內活性污泥系統之進流水、出流水及曝氣反應池混合水等三部分分別取樣,再進行詳細之水質分析,分析項目包括:pH、溫度、化學需氧量、懸浮固體物、MLSS、VSS、SVI、重金屬Cu、Ni等。在檢測比攝氧率時,直接將曝氣池之混合液置於BOD瓶,再紀錄溶氧之遞減情況。為了探討污泥比攝氧率在不同之COD與不同之重金屬濃度下之反應,另進行以進流水及蒸溜水稀釋混合後之實驗組。數據分析方法包含1. 應用實廠實驗設備建立污水廠數據資料,並收集污水廠數據進行統計及分析作業。再將作業後數據帶入試算表進行線性迴歸及STATISTICA軟體程式製作3D等高線圖求出線性關係與最佳範圍。2.將各實驗組之比攝氧率值與對應之不同重金屬濃度值進行排列分組。對分組後之數據進行統計分析,其後對一特定重金屬濃度之數據,以Monod動力模式(SOUR=(SOURm*COD)/(Ks+COD))模擬分析比攝氧率與COD之關係,再利用Excel製作Monod動力模式圖及雙導數法製圖求解動力常數,包括最大比攝氧率(SOURm)與半速率常數(Ks)。 結果發現:1.大武崙工業區污水處理廠活性污泥系統性質複雜,即使進行單項及多項線性迴歸分析後。單僅以線性迴歸方式無法釐清相互間之關係。2.在比攝氧率(SOUR)與重金屬銅(Cu)、重金屬鎳(Ni)相互關係的研究,藉由STATISTICA程式彙製3D等高線圖後,發現於重金屬銅(Cu)為0.08至0.18(mg/l),重金屬鎳(Ni)值於0.18至0.27(mg/l)時,產生最佳比攝氧率(SOUR)為10(mg.O2/g.vss.hr)範圍,判斷處理系統中存在微量重金屬銅(Cu)、鎳(Ni)有助於提升比攝氧率(SOUR)值。3.在一特之定重金屬銅(Cu)、鎳(Ni)濃度下, Monod動力模式下推導出之最大比攝氧率(SOURm)及半速率常數(Ks)有相依趨勢,因此,Monod動力模式可簡化成一階反應式:SOUR=(SOURm/ Ks )*COD ,來比較污泥活性。4.Monod動力模式分析第五組資料,該組重金屬銅(Cu)含量在0.03至0.19,重金屬鎳(Ni) 含量在0.05至0.19 ,最大比攝氧率(SOURm)為1.18至20.51(mg.O2)/(g.VSS.hr) 而(SOURm/Ks)於 0.2987時為最佳。證實生物處理系統受到重金屬銅(Cu)、鎳(Ni)之馴化,有重金屬銅(Cu)、鎳(Ni)存在時,反而活性污泥活性(SOUR)更佳。

並列摘要


This study has selected a plant in industrial park as an example not only to inspect the specific oxygen uptake rate (SOUR) of activated sludge in an aeration tank of that plant, but also investigate the environmental factors such as organic matter (expressed as chemical oxygen demand (COD)), the effect of copper (Cu) and nickel (Ni) against SOUR. The purpose of this research is to clarify a change of SOUR in activated sludge on site and the situation influenced by these factors. The obtained results can be actually applied to improve the operation of treatment plant and plan the control of poison material in intake water. The experimental method is to separately sample intake, outtake and mixed water in an aeration tank for activated sludge system in that plant to analyze water quality in details. The analysis items include: pH, temperature, COD, suspended solid, MLSS, VSS, SVI, copper, nickel and so on. When inspecting the SOUR, a mixed liquid in an aeration tank is directly poured into a BOD bottle and the decrease of solved oxygen is recorded. In order to investigate the reaction of SOUR of activated sludge at different COD and heavy metal concentration, the experiment sets of diluting and mixing intake and distilled water are conducted additionally. The analysis methods include 1. Applying plant equipment to establish and collect the data of a sewage treatment plant for statistics and analyses. The processed data are introduced to an application form for linear regression, and 3D contour maps are drawn by STATISTICA to determine the linear relationship and best range. 2. Arranging and grouping the SOUR in each experiment set and different heavy metal concentration. The grouped data are statistically analyzed. The data for a specific concentration of heavy metal are simulated with SOUR = (SOURm*COD)/(Ks+COD)) in the Monod Dynamics Model to analyze the relationship between the SOUR and COD, and then draw Monod Dynamics Model diagram with Excel and double derivative method to solve dynamic constants, including maximum SOUR and half-velocity constant (Ks). The results show: 1. The properties of activated sludge system for a sewage treatment plant in Dawulung Industrial Park are complicated even though conducting single and multiple linear regression. The relationship can’t be clarified only by linear regression. 2. In a relation study among SOUR, Cu and Ni, after 3D contour maps are drawn by STATISTICA, it can be found the best SOUR is in a range of 10 (mg.O2/g.vss.hr) when Cu and Ni is 0.08 to 0.18 (mg/l) and 0.18 to 0.27 (mg/l) to determine trace Cu and Ni existing in the processing system can improve the SOUR. 3. In a specific concentration of Cu and Ni, there is a dependent trend of maximum SOUR and half-velocity constant (Ks) derived from the Monod Dynamics Model. Therefore, Monod Dynamics Model can be simplified as first-order reaction: SOUR= (SOURm/ Ks)*COD to compare with sludge activation. 4. The Monod Dynamics Model analyzes the data in the fifth experimental set, where the best performances are shown when the Cu and Ni concentration in that experimental set are 0.03 to 0.19 and 0.05 to 0.19, the maximum SOUR is 1.18 to 20.51 (mg.O2)/(g.VSS.hr) and (SOURm/Ks) is 0.2987. It is verified that the biological treatment system makes sludge activation (SOUR) better after Cu and Ni is tamed instead.

參考文獻


[1].張怡塘、林瑩峰、章裕民、方鴻源、邱應志、袁又罡 (1997),環境微生物,中華民國環境工程學會。
[4].行政院環保署環檢所(2002),環境檢測標準方法驗證程序準則。
[6].洪珮珊,重金屬銅鎘對活性污泥 Bardenpho 程序硝化菌族群抑制效應之研究,碩士論文,私立朝陽科技大學環境工程與管理系,(2009.1)。
[16].Harry, E. (1999.) Treatment of Metal-Contaminated Wastes: Why Select a Biological Process. Trends. Biotechnol. 17: 462-465.
[20].Paolo Madoni, Donatella Davoli, Gessica Gorbi, and Luciano Vescovi (1996)Toxic effect of heavy metals on the activated sludge Protozoan Community,135-141

延伸閱讀