透過您的圖書館登入
IP:18.119.130.218
  • 學位論文

利用反應式磁控濺鍍系統製作奈米結構緻密層材料提升染料敏化太陽能電池效能及光電特性之研究

Enhanced performance and optoelectrical properties of Dye-Sensitized Solar Cells with nanostructure compact layer prepared by radio frequency magnetron sputtering

指導教授 : 陳隆建

摘要


本論文係研究利用反應式磁控濺鍍系統製作奈米結構緻密層材料(二氧化鈦、氮化銦、石墨烯薄膜)於染料敏化太陽能電池(DSSCs)。奈米結構緻密層材料在銦錫氧化物(ITO)玻璃與光電極二氧化鈦間形成一個電子轉移通道。染料敏化太陽能電池中製作二氧化鈦緻密層,有效地提升短路電流53.37%及59.34%的光電轉換效率,其短路電流與轉換效率分別為27.33 mA/cm2和9.21%。結構為ITO/ InN-CPL/ TiO2/ D719染料敏化太陽能電池,短路電流密度(JSC)、開路電壓(VOC),分別為23.2 mA/cm2、0.7 V和功率轉換效率(η)8.9%。石墨烯在染料敏化太陽能電池中扮演電洞傳輸層的角色,由量測觀察可有效地改善短路電流。緻密層材料二氧化鈦、氮化銦及石墨烯的電子傳輸層,有效隔絕透明導電膜與染料敏化太陽能電池中的電解液介面間的逆反應(back reaction)發生。

並列摘要


The utilization of nanostructure thin films as compact layer (TiO2, InN and graphene thin films) prepared in dye-sensitized solar cells (DSSCs) by radio frequency magnetron sputtering was examined. The nanostructure compact layer thin films provides a great electron transfer channel for the photogenerated electrons from TiO2 to indium tin oxide (ITO) glass. The TiO2 compact layer thin films improved the short-circuit current density and the efficiency of conversion of solar energy to electricity by the DSSC, yielding values of 27.33 mA/cm2 and 9.21%, respectively. DSSCs fabricated on ITO/InN/TiO2/D719 exhibited a short-circuit current density (JSC), open-circuit voltage (VOC), and power conversion efficiency (η) of 23.2 mA/cm2, 0.7 V, and 8.9%, respectively. Obvious improvements in short-circuit current density of the DSSCs were observed by using the graphene electron transport layer modified photoelectrode. The TiO2, InN compact layer and graphene electron transport layer reduces effectively the back reaction in the interface between the ITO transparent conductive film and the electrolyte in the DSSC.

並列關鍵字

Compact Layer TiO2 InN Graphene DSSC

參考文獻


2. B. O’Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353 (6346), 1991, pp. 737.
3. M. Bailes, P. J. Cameron, K. Lobato, and L. M. Peter, "Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells,” J. Phys. Chem. B, 109 (32), 2005, pp. 15429-15435.
4. B. O’Regan, J. Moser, M. A. Anderson, and M. Gratzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of lightinduced charge separation,”The Journal of Physical Chemistry,vol. 94, no. 24, 1990, pp. 8720–8726.
5. N. G. Park, J. van de Lagemaat, andA. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” The Journal of Physical Chemistry B, vol. 104, no. 38, 2000, pp. 8989–8994.
6. M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, and D. Y. Kim, “Electrospun TiO2 electrodes for dye-sensitized solar cells,” Nanotechnology, vol. 15, no. 12, 2004, pp. 1861–1865.

延伸閱讀