透過您的圖書館登入
IP:3.15.235.196
  • 學位論文

動態規劃法與回饋模擬法於空調系統之研究

Study of Air Conditioning System Design by Using Dynamic Programming Method and Feedback Simulation Method

指導教授 : 王文博 陳希立
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文採用動態規劃法與回饋模擬法於空調系統之創新設計,除了可應用於新的空調系統最佳化設計與設備尺寸選用外,亦可針對已設計完成或既有之空調系統進行模擬,並提供最佳化的節能額定運轉策略,為一種可以同時滿足系統設備最佳化設計與實際節能運轉策略的全方位空調設計方法。傳統的空調系統的設計方法,是以空調負荷逐時計算過程中,以最大的負荷作為系統設備選用的依據,因此造成過大的系統設計,由於設備規格選用過大,增加投資成本。此外,系統於實際運轉過程中,空調負荷並非皆在滿載狀況,當在部分負載操作下,系統的冷媒流量、空氣側與冰水側流量等需藉由閥件的控制以減少流量,而這些閥件所造成的阻力壓降又需由壓縮機、風車以及水泵等輸入更多的功來加以克服,造成運轉費用增加。所以,一個全方位的空調系統設計,除了考慮系統設備規格選用最佳化的設計(sizing)問題外,同時必須考慮系統於實際運轉時的額定(rating)問題。空調系統設備尺寸的設計問題,需在滿足各種限制條件下,得到系統在全載運轉時,起始成本與運轉成本的最佳化,並依此選用最佳化的空調設備尺寸。系統運轉的額定問題,是針對已設計完成或既有之空調系統,在壓力平衡與能量平衡的條件下,滿足環境的各項要求,並可在降載的運轉情況下,得到節約能源的控制策略。本文針對傳統空調設計方法缺點提出新的空調系統最佳化設計與模擬方法,新方法包括了動態規劃法與回饋模擬法,動態規劃法提供系統於各種限制條件下的系統最佳化設備選用規格設計;回饋模擬法可分析系統實際運轉額定問題與並提供節能控制策略。本論文所提出新的設計方法,除了可應用於新系統的設計階段之外,亦可針對既有之空調系統提供最佳化的運轉策略,為一種可以同時滿足設備最佳化設計與實際節能運轉的全方位解決方法,達到生命週期成本最小的省時、省力全方位解決工具。

並列摘要


This dissertation adopts Dynamic Programming Method (DPM) and Feedback Simulation Method (FSM) to design the air-conditioning system. It not only applies to system optimum design, but also simulates the system actual operation during the design stage. It is a total solution method for an air-conditioning system design. Conventional air-conditioning design methods utilize the maximum cooling load to choose equipments and ignore the actual running process. Consequently, it results in over sized system design. The applying of over sized capacity equipments means more initial investments. In actual running process, most of the equipments operate at partial load. In order to meet the load requirements, the air conditioning system has to increase or decrease the flow rates of heat transfer fluid. Therefore it needs metering devices, control valves and dampers to control the flow rate of refrigerant system, chilled water system and air system. These devices cause the pressure loss, which has to be controlled and recovered by compressor, water pump and fan, and require more operating cost. Therefore, a total solution of air-conditioning system design can be considered as sizing and rating problems. The sizing problems deal with the determination of the size of an air-conditioning system in order to meet the requirement of constrains at a full load condition for an optimal initial and running cost. The rating problems deal with the determination of actual running performance of an existing or designing air-conditioning system at pressure and energy balance condition and provide the control strategies for the partial load operation. To solve the disadvantages of conventional design methods, the present dissertation applied dynamic programming method and feedback simulation method, to optimize the air-conditioning system design and to simulate the actual running process. With the help of DPM, the designer can design the system with optimized initial cost and meet the system constraints such as total pressure balance, the diameter of pipes, the velocity and pressure limitations, etc. With the application of FSM, the actual running system can be simulated and the operating control strategies can be justified. Then the simulation results can provide the performance-based design of air conditioning system, which can operate at the condition of conserved energy. In this essay, three DPM optimal design examples are illustrated. It also shows that FSM applies to exhaust air system, existed central air conditioning system and ice storage air-conditioning system. From the above examples, the optimization design of dynamic programming method and the control strategy option of feedback simulation method, prove workable and can offer less initial investment, reduce actual operating cost and energy consumption. It also demonstrates that the new proposed method provides the total solution for both air-conditioning system design and energy conservation during the actual operation.

參考文獻


26.Chen, W. L., Chen, H. J., Ting, C. C. and Chen, S. L., 2002, “Application of 3C Duct Design Method in Semiconductor Factory Process Exhaust Systems”, ASHRAE Transactions, Vol. 108, pp. 210-220.
25.Chen, W. L., Lin, M. C., Hsieh, J. J. and Chen S. L., 2001, “Feedback Simulation and Correction of Duct Design for Acidity Exhaust System in a Semiconductor Factory,” Journal of the Chinese Society of Mechanical Engineers, Vol. 22, No. 6, pp. 527-535.
49.Chiang, Y. C., Chen, H. J., Hsieh, J. J. and Chen, S. L., 2005, “Modified RC Thermal Circuit Model Applied to Cold Storage System with Multi-loop Heat Pipes”, ASHRAE Transactions, Vol. 111, Part 1, pp. 387-394, 2005.
1.ASHRAE, 2005, ASHREA Handbook – Fundamentals, Atlanta, ASHRAE Inc.
3.ASHRAE, 2003, ASHREA Handbook – HVAC Applications, Atlanta, ASHRAE Inc.

被引用紀錄


賴明湖(2006)。空調水系統測試調整平衡技術探討與特性分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2906200609394100
蔡定宇(2011)。動態規劃法應用於時間電價用戶最佳契約容量之研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2101201113063600

延伸閱讀