透過您的圖書館登入
IP:3.141.100.120
  • 學位論文

電光調變鈮酸鋰微碟形共振元件之研究

Study of Electro-Optic Modulation on LiNbO3 Microdisk Devices

指導教授 : 王子建
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究使用鈮酸鋰的電光效應,調變鈮酸鋰微碟形的共振波長。在元件製作上,首先使用離子佈植與化學蝕刻在鈮酸鋰上製作出底切微碟形結構,此一底切結構會使微碟形上方的上電極無法接線出來。為了解決此問題,藉由微影製程、真空鍍膜、與化學蝕刻,製作懸浮導線以連接上電極至電極片上,以構成電光調變鈮酸鋰微碟形元件。 在鈮酸鋰上製作微芯環元件,論文中提出反面放置鈮酸鋰微碟形於高溫爐中進行表面熱流處理,以接近物質熔點的高溫使材料表面具流動性,藉由重力與表面張力作用,形成微芯環之結構。微芯環元件特性量測使用錐形光纖耦合法,實驗結果顯示所製作直徑20μm、反面熱流9小時的鈮酸鋰微碟形元件,具有高達5.9×104的內部品質因子,未來可應用於鈮酸鋰的倍頻轉換上。 在鈮酸鋰上製作微橢圓形碟形元件,可實現單一方向發射的微型雷射,論文中討論錐形光纖耦合位置,對於橢圓微碟形的傳輸頻譜之影響。實驗結果顯示,光纖耦合位置決定是否可激發出共振模態,在橢圓曲率半徑愈小處,由於其衰逝場延伸範圍愈大,愈容易將錐形光纖中的光場耦合進入橢圓微碟形中。至於共振波長以及自由頻譜範圍,耦合位置對二者的影響很小。

並列摘要


This thesis studies the use of electro-optic effect to modulate the resonant wavelength of the LiNbO3 microdisk. The device is fabricated by using ion implantation and chemical etching on the -z surface of LiNbO3 to produce undercut microdisk structure. The electrode on the top of the undercut microdisk cannot be wired out. In order to solve this problem, the suspended wire is produced by using optical lithography, vacuum coating, and chemical etching to connect the top electrode to the pad to form the electro-optically modulated LiNbO3 microdisk. The LiNbO3 microtoroid device is proposed to be produced by use the back-side surface thermal reflow process. Gravity and surface tension effect at the temperature, which approaches the melting point of the LiNbO3, are utilized to form the microtoroid structures. By The microtoroid characteristics are measured by using the tapered fiber coupling method. The 20μm-diameter microtoroid devices, which is treated for 9hrs using the back-side thermal reflow, has the quality factor as high as 5.9×104, which facilitates the optical second-harmonic generation on LiNbO3. The LiNbO3 elliptical microdisk device is important to achieve a directional emission microdisk laser. This work discusses the influence of the coupling position of the tapered fiber on the transmission spectra of elliptical microdisk. Experimental results show that the fiber coupling position decides whether the resonance modes can be excited. Small curvature radius on the elliptical microdisk makes the optical field in tapered fiber more easily couple into an elliptical microdisk due to its larger evanescent field range. As to the resonance wavelength and the free spectral range, the fiber position has little influence.

參考文獻


[27]何政育,提昇鈮酸鋰微碟形元件共振特性之研究,碩士論文,國立台北科技大學光電工程系,台北,2012。
[1]G. Wang, X. Jiang, M. Zhao, Y. Ma, H. Fan, Q. Yang, L. Tong and M. Xiao, “Microlaser based on a hybrid structure of a semiconductor nanowire and a silica microdisk cavity,” Opt. Express, vol. 20, no. 28, pp. 29472-29478, 2012.
[2]J. Hofrichter, O. Raz, A. L. Porta, T. Morf, P. Mechet, G. Morthier, T. D. Vries, H. J. S. Dorren and B. J. Offrein, “A low-power high-speed InP microdisk modulator heterogeneously integrated on a SOI waveguide,” Opt. Express, vol. 20, no. 9, pp. 9363-9370, 2012.
[3]H. Jeong, S. Lee, G. Y. Sung and J. H. Shin, “Design and fabrication of Tb3+-doped silicon oxy-nitride microdisk for biosensor applications,” IEEE Photon. Technol. Lett., vol. 23, no. 2, pp. 88-90, 2011.
[4]D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature, vol. 421, pp. 925-928, 2003.

延伸閱讀