透過您的圖書館登入
IP:18.218.48.62
  • 學位論文

以厭氧生物溶出處理受重金屬污染底泥之研究

Treatment of Heavy Metals from Contaminated Sediment by Anaerobic Bioleaching

指導教授 : 陳孝行
共同指導教授 : 陳勝一(Shen-Yi Chen)

摘要


目前國內對於受污染河川及湖泊之整治極為重視,但針對受污染水體底泥處理技術之研究極少,未來極需要此方面之技術,以處理浚渫後之大量底泥。 本研究之目的主要是在建立並探討受污染底泥經濟且可行性之生物處理技術,厭氧生物溶出法,希望利用兼性厭氧硫細菌之氧化還原與產酸等能力,在不同之操作條件下進行實驗,探討不同因子之影響,以求得將重金屬自受污染底泥中移除之最佳處理效率之操作參數。 由研究果發現,在厭氧生物溶出(At. ferrooxidas)程序之操作過程中,在不同初始 pH 值、不同元素硫添加量和底泥固體物濃度對於底泥重金屬之溶出效率,以鋅及銅較高,鎳次之,而鉻和鉛之溶出效率偏低,初始 pH 值之最佳操作值為 2之間,元素硫添加量之最佳操作值為 5 g L-1 之間,底泥固體物濃度之最佳操作值為 5% 之間。在厭氧生物溶出(T./Tm. denitrificans)有添加元素硫程序之操作過程中,底泥中重金屬之溶出效率以鋅和鎳為最高,銅和鉛次之,鉻則無溶出,底泥中重金屬之溶出效率不佳。

並列摘要


River restoration and improvement for rivers and lakes has become a very important subject for our government authorities. However, we lack the technology and skills needed to handle polluted aquatic sediments. These skills and technologies are critical to handling the remaining sediments after dredging the river. The main objective of this research is to establish and explore an economic and applicable biological treatment technology to anaerobic bioleaching to utilize the Oxidation-reduction ability and the acid forming ability anaerobic sulfur bacteria. Under different experiment circumstances, the affects of each factor are evaluated to find the best environmental parameters for removing heavy metal from polluted sediments. According the research, during the process of anaerobic bioleaching(At. ferrooxidas)different factors such as initial pH level, sulfur concentration additive volume and sediment solids content all have effects of the effectives of heavy metal extraction. Wherein, Zinc and Copper lands in the highest level followed by Nickel and Chromium and Lead have the lowest extraction efficiency. The best initial pH level is between 2 and the best operation value for sulfur concentration additive volume is 5 g L-1. The best value for sediment solids content is 5%. During the process of anaerobic bioleaching sulfur concentration additive(T./Tm. denitrificans), Zinc and Nickel has the highest efficiency of extracting heavy metal from sediments, followed by copper and lead. Chromium displays no extraction value and is the worst in performance for extracting heavy metal from sediments.

參考文獻


施旻佑,含汞活性碳生物溶出程序之可行性探討,碩士論文,國立臺北科技大學環境工程與管理研究所,臺北,2012。
Acar, S., J. A. Brierley and R. Y. Wan, "Conditions for bioleaching a covellite-bearing ore." Hydrometallurgy, vol. 77, 2005, pp. 239-246.
Beck, A. J. and S. A. Sanudo-Wilhelmy, "Impact of water temperature and dissolved oxygen on copper cycling in an urban estuary." Environ. Sci. Technol., vol. 41, 2007, pp. 6103-6108.
Beller, H. R., P. S. G. Chain, T. E. Letain, A. Chakicherla, F. W. Larimer, P. M. Richardson, M. A. Coleman, A. P. Wood and D. P. Kelly, "The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans." J. Bacterio., vol. 188, 2006, pp. 1473-1488.
Bridge, T. A. M. and D. B. Johnson, "Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria." Appl. Environ. Microbiol., vol. 64, 1998, pp.2181-2186.

被引用紀錄


廖鈞暐(2016)。以兼性厭氧硫氧化菌進行重金屬污染底泥生物溶出程序之研究〔碩士論文,國立交通大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0030-0803201714333358

延伸閱讀