透過您的圖書館登入
IP:3.17.150.163
  • 學位論文

高染著量高比表面積可撓式太陽能電池之研究

The flexible solar cell with higher dye-uptake and higher BET

指導教授 : 趙豫州
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


科技先進國家有感於石油與煤的日益估竭,核能的不受歡迎以及二氧化碳排放所造成的溫室效應與臭氧層破洞,均積極推動開發清潔且安全的新能源。太陽能則是大家倍感興趣之一,又世界各國目前透過各項的獎勵政策,因此有人預測在下世紀前半期會超過核電,如此在未來能源產業裡,它將扮演著重要的角色。1990年代初,M. Grätzel等發展出新型太陽能電池,利用吸附染料之高表面積二氧化鈦以吸收可見光波長區段的入射太陽光。此種太陽能電池的效率可以達到10~12%,已與非晶矽太陽能電池的效率相同。使用多孔性奈米半導體薄膜是染料敏化太陽能電池元件製備的一個極重要關鍵。因此本研究以異丙基氧化鈦為起始物,利用溶膠-凝膠法搭配水熱法嘗試合成多孔性奈米二氧化鈦。將所製備的多孔性奈米二氧化鈦分別以X光繞射儀(XRD)、穿透式電子顯微鏡(TEM)和比表面積測定法(BET)等儀器鑑定並分析其性質。 由實驗結果得知,以8.0M醋酸作為水解反應的催化劑,並高溫高壓反應釜中以二段式加熱攪拌(80℃下8小時,200℃2小時)所得凝膠,再於150℃煅燒所製得的二氧化鈦多孔薄膜電極之銳鈦礦比例為100%、比表面積為227m2/g,結晶度為88%,粒徑為7.2nm,其孔隙大小介於5~8nm。以紫外光照射法來清潔多孔二氧化鈦薄膜電極,再於室溫浸泡(N719)18小時染色可得到8.0×10-7mole/cm2的高染著量,所組成之元件(電解質為0.5M LiI/0.05M I2之乙腈溶液),在100mW/cm2照射之光電轉化效率達4.2%;10mW/cm2照射則達到5.4%。

關鍵字

奈米 染料 太陽能電池

並列摘要


Knowing that oil and coal are exhausted, nuclear energy is not popular, and green house effect and broken ozone layer are aggravated by the emission of CO2, developed countries are actively developing clean and safe new energy. Solar energy is the one that arouses people’s interests and countries are offering incentives to promote it. Some predict that it will exceed the generation of nuclear power by the middle of next century. As a result, solar energy will play an important role in future energy industry. At the beginning of 1990’s, M. Grätzel et al., using the high-surface-area titania, developed a new type of solar cell to absorb the sunshine from the angle of incidence of visible light wavelength. The efficiency of such solar cell could reach 10-12%, as high as that of non-crystalline silocone solar cell. Moreover, porous nano semiconductor membrane is a key to the manufacture of die-sensitized solar cells. Therefore, the researcher used titanium isopropoxide as the starter to try to synthesize porous nano titania with sol-gel and hydrothermal methods. The manufactured porous nano titania was inspected with XRD, TEM and BET to analyze its property. The results revealed that, with the catalyst for hydrolysis from 8.0 M acetic acid and the gel from two-stage heating mixture (8 hours under 80℃ and 2 hours under 200℃) in high temperature and pressure caldron, plus the calcinations under 150℃, the portion of titania porous membrane electrode and titanium coal arrived at 100%, surface was 227m2/g and crystallinity was 88%, particle diameter was 7.2 nm and the pore fell between 5 and 8 nm. The porous titania membrane cell was cleaned with UV ray method and then soaked in N719 for 18 hours in room temperature. It was then obtained a high die amount of 8.0×10-7mole/cm2. The component (acetonitrile with electrolyte as 0.5M LiI/0.05M I2), under the illumination of 100mW/cm2, had the optronics transformation efficiency of 4.2% and 5.4%.

並列關鍵字

dye nano solar cell

參考文獻


【8】R.Wang, Z.Guo, G.Wang, Solar Energy Materials and Solar Cells, 90,1052(2006)
【9】M.A.Green,Third Generation Photovoltaics:Advanced Solar Energy Conversion, Springer Series in Photonics,160(2003)
【11】M.A.Green, K.Emery, D.L.King, Progress in photovoltaics,13,49(2005)
【26】D. R.Ulrich, J. Non-cryst. Solids, 100, 174. (1988)
【27】A. C. Pierre, Introduction to Sol-Gel Processing 11. (1998)

被引用紀錄


陳志豪(2011)。靜電紡絲技術應用於染料敏化太陽能電池〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-0108201112462100

延伸閱讀