透過您的圖書館登入
IP:3.128.199.210
  • 學位論文

具非線性不確定系統之適應性強健型小腦模型控制器設計

Adaptive Robust Cerebellar Model Articulation Controller Design for Uncertain Nonlinear Systems

指導教授 : 林志民
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文之主旨係在於發展適應性強健型小腦模型控制器,其中利用具有動態特性的遞迴式小腦模型控制器為近似基礎並結合適應性控制、滑動模式控制與強健控制等理論,再依據李雅普諾夫穩定性定理設計遞迴式小腦模型控制器的參數適應性調整法則,因此整個閉迴路控制系統的穩定性可以被保證。最後並廣泛的應用在一些具有非線性且不確定系統之閉迴路控制上。本論文將探討所提出來的適應性強健型小腦模型控制器及其應用性。首先,將介紹小腦模型控制器並提出遞迴式小腦模型控制器設計。接著將針對單輸入-單輸出受控系統並根據上述所提出的遞迴式小腦模型設計控制器。最後將其應用於船舶航向控制、車輛追蹤防撞控制、線型超音波馬達位置控制、混沌電路等系統當中,同時並討論所設計之控制系統的優越性。在多輸入-多輸出控制系統方面,本論文針對系統分別提出不需數學模型及需要數學模型之控制法則。這些控制法則分別採用遞迴式小腦模型控制器為主控制器與當成不確定量的估測器。所開發出來的多輸入-多輸出適應性強健型小腦模型控制器並應用於解決一些具有高度非線性且時變系統的軌跡追蹤問題。其受控系統包括混沌電路系統、質量-彈簧-阻尼系統。最後本論文也利用遞迴式小腦模型控制器設計出失效容忍的兩足機器人強健控制法則。經由模擬與實作的結果顯示,對於這些具有不確定量且非線性之系統,本論文所提出的控制系統均能達到令人滿意的控制性能。

並列摘要


The purpose of this dissertation is to develop the adaptive robust cerebellar model articulation controller (CMAC) based on the dynamic characteristics of recurrent CMAC (RCMAC), and to integrate it with adaptive control, sliding mode control and robust control technologies for the control application to uncertain nonlinear systems. According to Lyapunov synthesis approach, the adaptive tuning laws of RCMAC can be derived and the system stability can be guaranteed. This dissertation introduces the structures of CMAC and RCMAC first. Then, the adaptive RCMACs are developed for the single-input single-output (SISO) nonlinear control systems; and they are applied to a ship heading control, a car-following control, a linear ultrasonic motor (LUSM) position control and a chaotic circuit control. Moreover, in multi-input multi-output (MIMO) control system design; this dissertation also proposes the adaptive robust control systems for the uncertain nonlinear MIMO systems. In this designs, RCMAC can be used as the main controller or the uncertainty estimator. The developed MIMO RCMAC adaptive robust control systems are then applied to a nonlinear chaotic circuit and a mass-spring-damper system. Furthermore, an RCMAC fault tolerant robust control of a biped robot is also presented. From the simulation and experimental results, the control schemes proposed in this dissertation have been shown to achieve satisfactory control performance for the considered nonlinear systems.

參考文獻


[2] Y. G. Leu, T. T. Lee, and W. Y. Wang, “On-line tuning of fuzzy-neural network for adaptive control of nonlinear dynamical systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 27, no. 6, pp. 1034-1043, 1997.
[3] C. H. Wang, T. C. Lin, T. T. Lee, and H. L. Liu, “Adaptive hybrid intelligent control for uncertain nonlinear dynamical systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 32, no. 5, pp. 583-597, 2002.
[4] J. Y. Chen, P. S. Tsai, and C. C. Wong, “Adaptive design of a fuzzy cerebellar model arithmetic controller neural network,” Proc. IEE, Contr. Theory Appl., vol. 152, no. 2, pp. 133-137, 2005.
[5] C. M. Lin and Y. F. Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 2, pp. 1248-1260, 2004.
[6] J. H. Park, S. H. Huh, S. H. Kim, S. J. Seo, and G. T. Park, “Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks,” IEEE Trans. Neural Networks, vol. 16, no. 2, pp. 414-422, 2005.

延伸閱讀