透過您的圖書館登入
IP:3.227.252.87
  • 學位論文

氣候變遷影響臺灣空氣品質之數值模擬研究

A Simulation Study of The Climate Change Effects on Air Quality in Taiwan

指導教授 : 賴信志

摘要


本研究探討區域氣候變遷對臺灣空氣品質影響程度,以2003當作基準年,蒐集並分析8年間(2003~2010)觀測值資料,以了解東亞大氣環流因氣候變遷影響之演變,及其影響臺灣區域氣候之變化。本研究使用中尺度氣象模式(MM5)進行氣象場之模擬,藉由模式提供高時空解析度的大氣資訊來分析近10年臺灣區域及季節氣候變化的情況。氣象條件為影響空氣品質的重要關鍵,為探討區域氣候變遷下氣象條件影響空氣品質變化之關連性,本研究利用空氣品質模式(Model-3/CMAQ)模擬過去8年的臺灣空氣品質演化的情形,再與氣象模式模擬結果整合分析,探討區域氣候變遷對臺灣空氣品質的影響。本研究並設計不同排放情境(2003年排放量及2007年排放量)的模擬來討論排放管制策略對臺灣空氣品質之影響,進而比對討論氣象條件與排放管制對臺灣空氣品質影響的程度。本研究最後為了解未來是否符合研究推論,並進行2030年空氣品質之模擬(排放量以2007年為基準),以此探討臺灣區域氣候變遷對空氣品質之影響。 經由資料蒐集分析結果,氣候變遷會造成東亞大氣環流型態的改變,其中較明顯變化季節於春季,蒙古地區溫度有上升攝氏0.5~1度之趨勢。溫度的上升影響到大陸性高壓的位置,平均狀態之春季大陸性高壓位置原位於大陸西北地區,蒙古地區溫度上升影響下使得春季大陸性高壓向東偏移到了日本地區。解析臺灣各區域風場變化情形結果發現,因東亞大氣環流型態改變使得臺灣各區域呈現不同的變化趨勢,變化較明顯的為春季的中部地區,2003年主要風向為東南東風,到了2010年則轉換成東南風。 模擬臺灣8年間空氣品質(排放量以2003年為基準)結果顯示,在區域氣候變遷影響下,因風場的改變使得全臺各季節臭氧小時值濃度有下降之趨勢,下降幅度在0.3~1.4 ppb之間。臭氧極值除了在秋季全臺濃度稍有上升之趨勢外,其他季節濃度皆為下降之趨勢,變化幅度在0.1~1.4 ppb之間。影響懸浮微粒濃度變化較多的為溼度及風場,溼度及風速於春、秋兩季為上升情況,冬季為下降情況,此結果造成冬季全臺濃度上升之趨勢,而在春、秋兩季則為濃度下降,全臺上升下降幅度在0.2~1.7μg/m3。 而利用2007年與2010年模擬結果比對發現(以2007年排放量為基準),全臺各季節臭氧小時值污染濃度上升,全臺上升幅度在0.1~2.2 ppb之間。臭氧極值則在春、秋、冬呈現濃度上升之趨勢,全臺上升幅度在0.6~2.4 ppb之間。懸浮微粒污染濃度在四季中皆呈現下降之趨勢,全臺下降幅度在2.2~4.8μg/m3之間。管制策略對於臺灣臭氧並沒有良好的改善成效,但對於懸浮微粒確實有明顯的改善效果。 模擬2030年氣候變遷影響下臺灣大氣環流的變化以及空氣品質的變化的結果,在未來區域氣候變遷的影響下,臺灣大氣環流型態皆有所改變,其中變化較為明顯為夏季,溫度全臺呈現升溫攝氏0~4度之趨勢,風向由西南風轉為東風,此變化情形則影響到了空氣品質。空氣品質模擬結果顯示,夏季溫度雖然升高,但因為風場的改變,導致臭氧小時值及極值污染濃度分別下降1.2、1.8 ppb。懸浮微粒污染濃度與風場、溼度及降水有較大之關連性,模擬結果顯示,溼度及降水於春、夏季有上升趨勢,秋季為下降趨勢,此現象造成懸浮微粒濃度於春、夏兩季濃度下降,秋季為濃度上升趨勢,全臺濃度上升下降幅度於1.2~1.4 μg/m3。 氣候變遷的影響下,東亞大氣環流型態會有顯著的改變,這使得臺灣天氣型態及空氣品質間接地被影響而改變。過去八年間,臺灣溫度及風場的改變,造成臭氧有下降的趨勢,懸浮微粒則因溼度的變化,於春、秋兩季上升,冬季下降之趨勢。2030年因氣候變遷的影響下,溫度及風場的改變使得臭氧濃度於夏季呈現濃度下降,而溼度的改變,使得懸浮微粒於2030年於春、夏濃度下降,秋、冬濃度上升。

並列摘要


This study investigated the regional climate change on air quality impact of Taiwan, The base year is 2003, collected and analyzed 8 years (2003~2010) observation data to understand East Asian atmospheric circulation due to climate change affected the evolution and impact of regional climate change in Taiwan. In this study, we use meteorological mesoscale model MM5 to simulate Taiwan's regional and seasonal climate changing of the past 10 years, Also we used Model-3/CMAQ to evaluate Taiwan's air quality situation to explore the area of climate change on air quality. Different emission scenarios (2003 and 2007) of the emission control strategy were designed to discuss air quality impact, and then discuss the weather conditions compared with the emission control impact on the air quality in Taiwan. Finally, A future climate change scenario in 2030 to explore the area of climate change on Taiwan's air quality impact was simulated. Through data collection and analysis results of climate change caused by the East Asian atmospheric circulation patterns change, one of the more significant changes in the spring is the temperature in Mongolia area rises of 0.5~1oC. Temperature rising affects the location of the continental high pressure, the original location of the continental high pressure in spring is located in the mainland Northwest Territories, Mongolia, under the influence of the temperature rising, it shift eastwards to Japan. Resolving the regional wind field in Taiwan was found that due to the East Asian atmospheric circulation patterns changed by the shifting of Continental high pressure, it makes different trends of wind in spring . The most obvious change is in the central region, the main wind direction is east-southeast wind in 2003, but it converted into southeast wind in 2010. Air quality simulation in Taiwan for eight years showed that the regional impacts of climate change to air quality is the hourly ozone concentration decreased gradually, due to the seasonal change of the wind field in Taiwan which made a decrease of 0.3 ~ 1.4 ppb. Particularly, the maximum ozone concentration increases (0.1 ~ 1.4 ppb) in autumn only but decreases in other seasons. PM10 is strongly affected by wind and humidity, when climate change made the wind speed rise in spring and autumn but decrease in winter, it associates with PM10 increasing 0.2 ~ 1.7μg/m3 in winter To examine the meteorological effect, fixed emission (2007 emission) with different meteorological condition (2007 and 2010) are compared. From the simulation results found the seasonal hourly ozone concentration increased between 0.1 ~ 2.2 ppb in 2010 and maximum ozone increased 0.6 ~ 2.4 ppb in spring, autumn and winter. In contrast, PM10 concentration at all seasons of 2010 decreased in the range between 2.2 ~ 4.8μg/m3. Finally, the future scenario run for the air quality of 2030 indicates atmospheric circulation patterns will be changed around Taiwan, most obvious change is in summer, the temperature rise up 4oC and wind direction shift from the southwest wind to east. This situation will affect the air quality. CMAQ simulation results show that when wind field changed, hourly ozone and maximum ozone concentrations decreased 1.2 ppb and 1.8ppb. PM10 decrease in spring and summer but increase in autumn (1.2 ~ 1.4 μg/m3), it also indicates the changing trend of PM10 is in good agreement with the wind, humidity, and precipitation variation.

參考文獻


18. Lars Gidhagen, Magnuz Engardt, Boel L¨ovenheim, and Christer Johansan., (2012).Modeling Effects of Climate Change on Air Quality and Population Exposure in Urban Planning Scenarios, doi:10.1155/2012/240894
17. 中華民國空氣品質監測報告九十二年年報,行政院環境保護署。
18. 中華民國空氣品質監測報告九十三年年報,行政院環境保護署。
19. 中華民國空氣品質監測報告九十四年年報,行政院環境保護署。
20. 中華民國空氣品質監測報告九十五年年報,行政院環境保護署。

被引用紀錄


黃亮博(2016)。利用臺灣空氣品質決策支援系統對南臺灣PM2.5管制策略之探討〔碩士論文,長榮大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0015-2308201615340000

延伸閱讀