透過您的圖書館登入
IP:3.16.218.62
  • 學位論文

電解式微幫浦之研發及潛在應用

Development and potential applications of an electrolysis micropump

指導教授 : 劉承賢

摘要


新一代的微幫浦已經不再是單一的單純功能,因為已經朝系統晶片的整合及生醫應用方向做整體的規劃,所以如何發展一個易整合於各種元件及系統的微幫浦是個很重要的議題,我們欲發展低耗能往復式電解微幫浦的元件開發及應用,而此在封閉系統中可往復來回致動的電解幫浦,相信在未來應用於微流體元件的整合應用將有很大的潛在發展,例如在本研究中所製作出的埋藏式微流體陣列探針元件,未來如果可以將微幫浦的元件與埋藏式微流體陣列探針元件作一結合,相信會對微流體及生醫元件有很大的幫助。 近年來,diagnostic screening 是個很重要的議題,而微機電在生醫領域中具有低成本製造、較少的試劑樣本的消耗及迅速並有利於point-of-care 測試及陣列式的處理樣本及試劑等優點的運用;此微機電技術將使人類在臨床醫學及藥物輸送的方面有突破性的發展,並且有大量的學者對於微探針在生醫領域上的運用有相當不錯的貢獻及相當好的研究成果,但大部分皆著重在單純電極探針(例如:Wise 教授研究團隊)在生醫(例如:電生理)上的運用;但在治療方面,偏好具有流道的探針,因為具有藥物傳輸的優點及治療功效,並且利用微機電製程所製造具有流道的探針對於長期藥物的注入(或產生濃度梯度)方面有很大的優勢。 藥物輸送有很多因素需要考慮及分析,一般細胞或組織用藥都是非常昂貴或求取不易,所以如果能夠精確及給予適當的劑量就可以達到較少劑量的損耗或浪費,這將可以省掉很多開發用藥或研究或觀測細胞(組織)行為時所需的研究經費; 因此如果可以製造細胞等級尺寸大小的陣列式微小具有埋藏式中空流道的噴藥(或產生濃度梯度)裝置或元件,期望將對生醫領域有很大的幫助。本論文包含四個部分,第一是將製作一個生醫平台所需埋藏式流道的元件,第二是發展往復式電解幫浦,論文中將有詳細的製程介紹與其致動的原理分析;第三是在埋藏式流道通入染料以驗證其埋藏式流道的通透性;最後在電解幫浦的部分,利用簡單的玻璃片上沉積電極與PDMS流道的簡易製程,完成了往復式電解幫浦的雛形及實驗驗證其往復式概念的可行性。本論文發展之電解式微幫浦晶片具有製作簡單且易整合的優點,希望在未來發展之生物晶片上能有所應用。

並列摘要


Through decades of developing micropumps in the MEMS field, a new micropump design should not only focus on performance and function, but should also target the ability to be integrated into BioMEMS system chips for the achievement of versatile applications. For this reason, a new micropump design, possessing the potential to integrate with various developed microdevices, has considerable value. This study proposes a new electrolysis micropump, featuring low power consumption and heat pipe-like back and forth actuation. It is believed that such design would have large potential to integrate with varied microfluidic devices. It is also believed that the combination of our micropump and an embedded microfluidic array probe matches the future trend of BioMEMS development, and provides a high quality tool for further study of medical tests involving biological samples. In recent years, diagnostic screening has drawn increasing attention. The advantages of BioMEMS technology include low fabrication cost, low sample consumption, and a rapid reaction rate suitable for point-of-care testing. Processing samples and reagents in array form could provide a breakthrough for clinical medicine and drug delivery development. Many studies have been conducted on the microprobe for biological applications, but most of them, such as the work of Professor Wise's team, focused solely on electrode probes for electrophysiology applications. However, attention to treatment requirements and microprobe design with flow channels is preferable. It has the capacity for drug delivery; furthermore, it is superior in long-term medicine injections and medicine gradient generation. Some important issues regarding drug delivery. Generally speaking, medicines or reagents used for cells and tissues are expensive and not easily accessible, and the required doses are critical. Therefore, if the dose could be administered precisely, it would fit the desire of experiment control and be economical. That is why a cell-size compatible microprobe array with embedded hollow flow channel for drug injection contributes largely to the biomedical field. This thesis comprises of four main parts: first, the realization of microprobe with embedded flow channel and heat pipe-like micropump and their microfabrication process; second, the actuation principle of the heat pipe-like electrolysis micropump; third, the injection of dye solution for confirmation of the lack of obstruction in the flow channel; finally, the experiment of the heat-pipe like micropump with the phenomena of back and forth actuation. The micropump developed in this thesis has the advantage of easy fabrication and easy integration with other devices, and is expected to be applied to other BioMEMS chips in the future.

參考文獻


[2] D. J. Laser and J. G. Santiago, “A Review of Micropumps”, J. Micromech. Microeng., vol. 14, no. 6, pp. R35-R64, 2004.
[3] K. W. Oh and C. H. Ahn, "A review of microvalves," J. Micromech. Microeng., vol. 16, no 5 pp. R13-R39, 2006.
[4] T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science, 298, pp.580-584, 2002.
[5] G. C. Birura, et al. , “Micro/nano spacecraft thermal control using a MEMS-based pumped liquid cooling system,” SPIE Microfluidics and BioMEMS,pp.196-205, 2001.
[8] J. Kirshberg, et al. , Cooling Effect of a MEMS Based Micro Capillary Pumped Loop for Chip-level Temperature Control , ASME, pp.1-8, 2000.

被引用紀錄


陳瑞雯(2008)。網路資源輔助「問題導向學習」:國中英語資優社團之個案研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2008.00509

延伸閱讀