透過您的圖書館登入
IP:54.81.157.133
  • 學位論文

燃料電池用碳奈米管/複合材料雙極板之製備及其性質之研究

Preparation and Characterization of Carbon Nanotube/Composite Bipolar Plate for Fuel Cell

指導教授 : 王奕凱 馬振基
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究旨在探討添加碳奈米管於乙烯酯樹脂中,並採用塊狀模造成型法(BMC),製備薄型微小化複合材料雙極板之方法及其性質。研究的碳奈米管包含 (1)純碳奈米管(Prinstine CNT);(2)酸改質碳奈米管(Acid modified CNT);(3)以分子量400及2000的聚醚胺類做為分散劑處理之分散碳奈米管(CNT/POP400和CNT/POP2000);(4)採用自由基改質法,於碳奈米管表面接枝分子量400及2000的聚醚胺類形成CNT-mPOP400和CNT-mPOP2000之改質碳奈米管。改變碳奈米管的添加量分別為0.25、0.5、1及2 phr製備複合材料雙極板,測試其抗折強度、耐衝擊強度、體積導電度、抗腐蝕性質、熱膨脹性質、燃燒性質、氣體滲透率,單電池組裝性能測試。 本研究使用的BMC配方可壓出具有流道的複合材料雙極板,目前的方法可壓出流道寬度及深度均為0.8 mm,流道間距離為0.8 mm及厚度為1.2 mm的複合材料雙極板。 本研究最適之複合材料雙極板為添加CNT-mPOP2000所製備的複合材料雙極板之孔隙度由0.270 % (0 phr)減少至0.118 % (2 phr);抗折強度由28.00 Mpa (0 phr)提升至48.33 MPa (2 phr);艾氏無缺口衝擊強度由53.56 J/m (0 phr)增加至108.51 J/m(1 phr);體積導電度由155 S/cm(0 phr)增加至1370 S/cm (2 phr);腐蝕電流由2.5×10-7 Amps/cm2 (0 phr)增加至2.4×10-6 Amps/cm2 (2 phr);熱膨脹係數由37.00 μm/m℃ (0 phr)減少至16.62 μm/m℃ (2 phr)。在氦氣滲透率測試顯示,所有配方複合材料雙極板都無漏氣,防火難燃測試方面,各配方複合材料雙極板都符合UL-94V0,LOI>50。添加1 phr CNT-mPOP2000製備的複合材料雙極板組成單電池,其最大電流密度由1.03 A/cm2 (0 phr)提升至1.32 A/cm2,電功率密度由0.392 W/cm2 (0 phr)提升至0.580 W/cm2。 本研究所製備之複合材料雙極板之體積導電度,耐衝擊強度,抗腐蝕電流等性質符合美國能源部(Department of Energy U.S.A., DOE)的指標。因此,本研究所製備的複合材料雙極板可應用於質子交換膜燃料電池。

並列摘要


This study investigates the preparation and properties of polymer composite bipolar plates (the thickness < 1.2 mm) for use in polymer electrolyte membrane fuel cells (PEMFCs). The composites contain vinyl ester resin, graphite powder, and multiwalled carbon nanotube (MWCNT). The polymer composite bipolar plates were fabricated by bulk molding compound (BMC) process. The MWCNTs studied include prinstine CNT, acid modified CNT, surfactant-modified MWCNT (CNT/POP400 and CNT/POP2000), and the functionalized MWCNT (CNT-mPOP400 and CNT-mPOP2000) prepared by free radical reaction with Poly(oxypropylene)-backboned diamine. The effect of the carbon nanotube content on the electrical, physical, mechanical, thermal properties and sigle cell test of the polymer composite bipolar plate were investigated. Both the flow field path and depth in composite bipolar plate were 0.8 mm and the flow field land was 0.8 mm. The thickness of the composite bipolar plate was 1.2 mm. The optimum composites bipolar plate was prepared with 2 phr CNT-mPOP2000. The porosity and the coefficient of thermal expansion (CTE) of the composite bipolar plate with 2 phr CNT-mPOP2000 was decreased from 0.270 % to 0.118 % and from 37.00 μm/moC to 16.62 μm/moC. The flexural strength, the electrical conductivity, and the corrosion current of the composite bipolar plate with 2 phr CNT-mPOP2000 were increased from 28.00 MPa to 48.33 MPa, and from 2.5×10-7 Acm-2 to 2.4×10-6 Acm-2 and from 155 S/cm to 1370 S/cm, respectively. The unnotched Izod impact strength of the composite bipolar plate with 1 phr CNT-mPOP2000 was increased from 53.56 J/m to 108.51 J/m. The gas permeability of composite bipolar plates in this study were no leak. All of the composite bipolar plates in this study met UL-94V0 and LOI>50. The maximum current density and the power density of single cell of the composite bipolar plate with 1 phr CNT-mPOP2000 were promoted from 1.03 A/cm2 to 1.32 A/cm2 and from 0.392 W/cm2 to 0.580 W/cm2.These data meet the DOE (Department of Energy U.S.A.)target. The overall performance confirms the bipolar plates prepared in this study are suitable for PEMFC.

並列關鍵字

bipolar plate Carbon nanotube fuel cell composite

參考文獻


84. 陳韋任, “燃料電池用導電雙極板之碳奈米管/酚醛樹脂奈米複合材料備製及其性質研究”,私立中原大學機械工程研究所,民國93年
9. 衣寶廉,“燃料電池-原理與應用”,五南圖書出版公司,2005
12. P. Collins, P. Avouris, Scientific American 38, 2000
44. J. E. Parton, S. J. T. Owen, Applied Electromagnetic 2nd edition., Macmillan publishers, London, 1986
5. J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, John Wiley, 2001

延伸閱讀