透過您的圖書館登入
IP:18.223.196.211
  • 學位論文

奈米結構鎳-鈷氧化物/氫氧化物於水相超級電容器及非對稱組裝設計之應用

Applications of Nanostructured Ni-Co Oxides/Hydroxides to Aqueous Supercapacitors of the Asymmetric Design

指導教授 : 胡啟章
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


基於鎳-鈷氧化物/氫氧化物獨特且充足的物化特性,本論文旨在回顧及發展研究其於水相超級電容器及其非對稱組裝設計之應用。吾人將於第一章,系統性地簡介能源科技的背景,釐清超級電容器的特質角色及定位,並說明當前超級電容器的分類。在充分了解水相超級電容器的背景知識及非對稱組裝設計的應用價值後,吾人於第二章將針對鎳-鈷氧化物/氫氧化物,簡介其歷史進程、製備方法及其應用作為水相超級電容器的活性材料時,所需關注的各項議題,並藉此統整歸納出本論文的研究動機及相應的實驗規劃。本論文所採用的實驗素材、檢測裝置、製備手法(包含鎳-鈷氧化物/氫氧化物及石墨烯)及組裝非對稱超級電容器之步驟,均詳述表列於第三章。於第四章中,吾人透過實驗檢證,不僅分別探討鎳-鈷氧化物/氫氧化物之結晶相態轉換比例及其奈米結構化後,對於水相超級電容器中表現之影響;更針對電雙層混搭電池型材料之非對稱超級電容器,基於電量匹配的原則,設計出兼顧高能量儲存及高功率輸出的操作方法。本論文之總結及對於鎳-鈷氧化物/氫氧化物的未來展望則整合於第五章。對於鎳-鈷氧化物/氫氧化物而言,其具氧氣產生/還原反應雙效特性,極利於應用作為金屬空氣電池之電化學觸媒;此外,發展取代純碳材的負極材料(如氫氧化鐵/活性碳複合材料)以提升鎳-鈷氧化物/氫氧化物類之非對稱超級電容器之儲存能量亦十分重要。

並列摘要


This dissertation mainly focuses on reviewing and developing Ni-Co oxides/hydroxides for the application of aqueous supercapacitor and their asymmetric design, respectively, based on their unique and abundant physicochemical characteristics. In chapter 1, the background knowledge of energy technology, the characteristics and roles of supercapacitors, and the classification of supercapacitors were systematically discussed. After realizing the research background of aqueous supercapacitor and the newly developed asymmetric supercapacitor, the historical development of energy storage/delivery technology, preparation methods, the key issues that need to be considered, and the research motive for synthesizing Ni-Co oxides/hydroxides were summarized in chapter 2. All of the experimental materials, instruments, preparation procedures of active materials (including Ni-Co oxides/hydroxides and graphene), and the steps for constructing an asymmetric supercapacitor were listed in chapter 3 in detail. In chapter 4, the results and discussion sections have been divided into three parts, in order to figure out the different influences from the determining factors (such as crystal phase transformation degree or porous nanostructures) on the capacitive performance of Ni-Co oxides/hydroxides and to develop an operating strategy to achieve charge balance state for an asymmetric supercapacitor consist of one battery behavior electrode. A brief conclusion of this dissertation and the future prospects for Ni-Co oxides/hydroxides were presented in chapter 5. The future prospect for Ni-Co oxides/hydroxides should particularly be investigated on two aspects: employing them as electrochemical catalyst for metal-air battery due to their bi-functional oxygen evolution/reduction features, and developing a novel negative electrode active material (Fe(OH)3/AC composites) to replace the pure carbon materials for enhancing the stored energy of Ni-Co oxides/hydroxides based asymmetric supercapacitors.

參考文獻


[219]. K. H. Chang, Y. T. Wu, C. C. Hu, “Key Factors Determining the Performances of RuO2-Based Supercapacitors”, in: V. Gupta (Ed.), Recent Advances in Supercapacitors, Chapter 3, Transworld Research Network, Kerala, India, 2006.
[62]. F. Lufrano, P. Staiti, E. G. Calvo, E. J. Juárez-Pérez, J. A. Menéndez, A. Arenillas, “Carbon Xerogel and Manganese Oxide Capacitive Materials for Advanced Supercapacitors”, International Journal of Electrochemical Science 6 (2011) 596.
[196]. X. H. Lu, X. Huang, S. L. Xie, T. Zhai, C. S. Wang, P. Zhang, M. H. Yu, W. Li, C. L. Liang, Y. X. Tong, “Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors”, Journal of Materials Chemistry 22 (2012) 13357.
[234]. M. Hamdani, R. N. Singh, P. Chartier, “Co3O4 and Co- Based Spinel Oxides Bifunctional Oxygen Electrodes”, International Journal of Electrochemical Science 5 (2010) 556.
[29]. P. V. Braun, J. Cho, J. H. Pikul, W. P. King, H. G. Zhang, “High power rechargeable batteries”, Current Opinion in Solid State and Materials Science 16 (2012) 186.

延伸閱讀