透過您的圖書館登入
IP:3.142.244.250
  • 學位論文

多重zeta值洗牌關係之 t-動機詮釋

A t-motivic interpretation of shuffle relations for multizeta values

指導教授 : 張介玉

摘要


Thakur [Tha10] 證明:予兩正整數 $r$ 和 $s$ ,兩個 Carlitz zeta 值 $zeta_A(r)$ 和 $zeta_A(s)$ 的乘積可以表示成 $zeta_A(r+s)$ 和所有權重為 $r+s$ 雙重 zeta 值以係數 $mathbb{F}_p$ 的線性組合。 Thakur 稱這種表示法為洗牌關係。予兩正整數 $r$ 和 $s$ ,我們建構一個 $mathbb{F}_q[t]$-模 $X$。予一係數 $mathbb{F}_q( heta)$ 的 $n$ 元組,我們亦在模 $X$ 中建構一個點 $v$ 對應於此 $n$ 元組。為了有效的地判別給定 $n$ 元組是否滿足洗牌關係,我們將它連結到點 $v$ 的 $mathbb{F}_q[t]$-扭性質。我們亦提供一套對於點 $v$ 的 $mathbb{F}_q[t]$-扭性質有效的判別法。

關鍵字

多重 zeta 值 洗牌關係 t-模

並列摘要


Thakur [Tha10] showed that, for $r,$ $sin mathbb{N}$, a product of two Carlitz zeta values $zeta_A(r)$ and $zeta_A(s)$ can be expressed as an $mathbb{F}_p$-linear combination of $zeta_A(r+s)$ and double zeta values of weight $r+s$. Such an expression is called shuffle relation by Thakur. Fixing $r,$ $sin mathbb{N}$, we construct an $mathbb{F}_q[t]$-module $X$. To determine effectively whether an $n$-tuple of coefficients in $mathbb{F}_q( heta)$ satisfies a shuffle relation, we relate it to the $mathbb{F}_q[t]$-torsion property of the point $vin X$ constructed with respect to the given coefficients. We also provide an effective criterion for the $mathbb{F}_q[t]$-torsion property of the point $v$.

並列關鍵字

multizeta values shuffle relations t-modules

參考文獻


[ABP04] G. W. Anderson, W. D. Brownawell, and M. A. Papanikolas. Determination of the algebraic relations among special $Gamma$-values in positive characteristic. Ann. of Math. (2), 160(1):237–313, 2004.
[And86] G. W. Anderson. t-motives. Duke Math. J., 53(2):457–502, 1986.
[AT90] G. W. Anderson and D. S. Thakur. Tensor powers of the Carlitz module and zeta values. Ann. of Math. (2), 132(1):159–191, 1990.
[AT09] G. W. Anderson and D. S. Thakur. Multizeta values for Fq[t], their period interpretation, and relations between them. Int. Math. Res. Not. IMRN, (11):2038–2055, 2009.
[Car35] L. Carlitz. On certain functions connected with polynomials in a Galois field. Duke Math. J., 1(2):137–168, 1935.

延伸閱讀