透過您的圖書館登入
IP:3.16.76.43
  • 學位論文

金屬氧化物和石墨烯奈米材料的光催化和光治療診斷應用

Photocatalytic and Phototherapeutic Applications of Metal Oxide and Graphene-based Nanomaterials

指導教授 : 凌永健

摘要


開發一個簡單、便宜,對於癌症只需單次且小劑量之非侵入式檢 測及治療方法極具挑戰性。為使此治療診斷方式有效,具有雙模態成 像功能的單光誘導光熱及光動力試劑受到高度期待。癌症一直被認為 是對世界人口的巨大威脅,導致全球數百萬的威脅。一般來說,癌症 會弱化體內的免疫系統,使其更容易被細菌攻擊及繼發感染。細菌性 病原體一般來說已在我們的生活中造成更嚴重的損害,且缺乏有效的 常規抗生素使我們面臨重大的疫情威脅。由於對於病原體具有非傳統 的殺傷及抑制方式,基於奈米材料的現代治療診斷技術提供了各種解 決方案。對於癌症來說,儘管受到應用系統和遞送過程的限制,且通 常藥物被設計成對於其目標疾病具有專一性,最近關於藥物遞送的研 究已經顯示出進展。 請注意設計多功能的奈米材料是一項非傳統且具有挑戰性的任務。 我們主要關注於採用奈米材料在生物醫學與治療領域的潛在突破。現 代的治療診斷技術需要專門的運送系統,而其餘的因不溶於水而受到 限制。 被認為是奇蹟材料的石墨烯,因其優越的電性、熱穩定性、表面 積,光學特性、機械性質以及良好的導電性,已經成為一種有前景的 材料。除了這些有趣的特性之外,石墨烯也是一種具有生物相容性的 材料,不像其他如富勒烯和奈米碳管等材料(CNTs)。 在最近設計的奈米材料,有機污染物,微生物感染等盛行全球且 進一步的風險中,將染料傾倒在地下水中,導致污染水源是最明顯的。 未經處理且含有染料的工業廢水在我們的土地和水體上釋放,這需要 更具策略性和更有效的水處理方法。對於這樣的問題,我們設計了一 種基於石墨烯的奈米複合材料,用於在保持生物相容性的情況下,有 效地破壞染料及有機污染物,如羅丹明B 和細菌。我們設計的材料 不僅能成功的殺死癌細胞,還能殺死細菌性病原體。 因此,發現如RGOPAA,DHA @ MGPA-ICT 和GV-PEI 等材料, 我們提供了多種具有生醫診斷和成像、光動力和光熱研究、磁導藥物 遞送,及對於被有機廢棄物污染之廢水之處理,一個有效且廣泛的潛 在應用材料選擇。

關鍵字

治療診斷

並列摘要


Developing of a simple and cost-effective strategy to diagnose and treat cancer with single and minimal dosage through noninvasive methods are highly challenging. To make such theranostic strategy effective, single light induced photothermal and photodynamic reagent with dual modal imaging capability is highly desired. Cancer has long been considered a huge threat to the world population, leading to millions of threat worldwide. Often cancer leads to weaker immune system in the body, making it easier for bacterial attacks and secondary infections. Bacterial pathogens have caused much more havoc in our lives in general and the lack of effective conventional antibiotics exposes us to a major epidemic threat. Modern therapeutics based on nanomaterials has provided various solutions due to their unconventional approach towards pathogen killing and inhibition. For cancer, recent studies on drug delivery have shown progress although limited by the system of application and delivery process and often, drugs are designed very specific to their target disease. Designing of a multifunctional nanomaterials, keeping in mind their unconventional applications is a challenging task. Our major concern must be to employ nanomaterials for a potential breakthrough in the field of biomedicine and therapy. Modern therapeutics demand for specialized delivery system while rest are limited due to their insolubility in water. Graphene, considered a wonder material has emerged as a promising material owing to its fascinating properties in superior electronics, thermal stability, specific surface areas, optical and mechanical, as well as good conductivity. Apart from the other intriguing properties, graphene is also a biocompatible material, unlike its other counter parts like fullerene and carbon nanotubes (CNTs). Among the globally prevalent and further emanating risks of recently engineered nanomaterials, organic pollutants, microbial infections, etc., dumping of dyes in ground water thereby contaminating the water supply is the most notable. Untreated Industrial wastes containing dyes are released on our grounds and water bodies, which demands for a more strategic and efficient water treatment methods. For such concerning problems, we have designed a graphene based nanocomposite for effectively destroying dyes and organic pollutants, like Rhodamine B and bacterial population while still maintaining its biocompatibility. Our designed materials have not only been successful in killing cancer cells, but also bacterial pathogens. Therefore, the discovery of materials like RGOPAA, DHA@MGPAICT and G-V-PEI, we provide a diverse choice of materials with effective and vast potential applications in biomedical diagnostics and imaging, photodynamic and photothermal studies, magnetically guided drug delivery, as well as effective treatment for organic water pollutants.

並列關鍵字

Phototherapeutic

參考文獻


Chapter 1
1. Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro- Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodr??guez, E. M.; and Sol?ea, J. G. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6, 9494–9530.
2. Dolmans, D. E.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3, 380–387.
3. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T. and Liu, Z. Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Lett., 2010, 10, 3318–3323.
4. Murakami, T.; Nakatsuji, H.; Inada, M.; Matoba, Y.; Umeyama, T.; Tsujimoto, M.; Isoda, S.; Hashida, M. and Imahori, H. Photodynamic and Photothermal Effects of Semiconducting and Metallic-Enriched Single-Walled Carbon Nanotubes. J. Am. Chem. Soc., 2012, 134, 17862–17865.

延伸閱讀