透過您的圖書館登入
IP:18.116.63.236
  • 學位論文

利用高介電材料與三五族高電子遷移率通道材料之介面調變工程作為鈍化保護以實現超越矽互補式金氧半場效電晶體技術之研究

Interface engineering between high-κ dielectrics and III-V high mobility channel materials for passivation enabling the technology beyond Si CMOS

指導教授 : 黃倉秀 洪銘輝 郭瑞年

摘要


高介電常數氧化物/金屬閘極再加上高電子遷移率三五族半導體,此金氧半疊層技術將為電子工業達成高效能與低功耗應用,成為下世代的新電子元件。此論文主要目的為藉由結合電性、化學性、結構性的各種分析方法,了解及控制這些異質結構疊層的介面鈍化保護效果。 此臨場沉積的方式,不僅利用稀土族氧化物甚至是氧化鉿相關的高介電材料,來做為介面調變工程以成功地達到三五族半導體表面的鈍化保護效果:低於十二次方且在能帶中段沒有峰形分布、低於一個奈米的等效厚度、低的漏電流、半導體與氧化物間的導電與價電能帶差皆大於一點五個電子伏特、優異的熱與化學穩定性(大於800度)。 更進一步成功地發展製作自我對準(self-aligned)閘極先上(gate-first)反轉通道(inversion-channel)增強型砷化銦鎵N型金氧半場效電晶體,有著低次臨界擺幅(<100 mV/dec);汲極電流為1.5 mA/μm;非本質通道電導值為0.77 mS/μm;電子遷移率峰值為2100 cm2/Vs。 此研究顯示,藉由介面調變工程,可成功地滿足欲實現有著高效能之極微元件的關鍵要求。

並列摘要


The High-κ/Metal-Gate plus III-V high mobility channel materials is regarded as a urgent issue for achieving high performance and low power dissipation complementary metal-oxide-semiconductor (CMOS) technology beyond 15 nm node. A combination of electrical, chemical, and structural characterization methods to evaluate the MOS interface passivation quality. The interface engineering of in-situ directly deposited not only rare-earth oxide (REOs) but also HfO2-based high-κ dielectrics on III-V surface exhibited the successful passivation, in terms of low interfacial density of states (Dit) below 10e12 eV-1cm-2 without midgap peak, low equivalent oxide thickness (EOT) below 1 nm, low leakage current, both conduction band offset (ΔEc) and valence band offset (ΔEv) are larger than 1.5 eV, and truly high thermal stability higher than 800 oC. Moreover, high performance of self-aligned gate first inversion-channel MOS field-effect-transistors (MOSFETs) have achieved steep subthreshold swing (SS) value below 100 mV/dec, a maximum drain current (Id,max) of 1.5 mA/μm, a maximum transconductance (Gm) of 0.77 mS/μm, and a peak field-effect mobility (μFE) of 2100 cm2/Vs. This work suffices the key for realizing ultimately scaled devices with really high performance.

並列關鍵字

InGaAs III-V high-k passivation MOSFET

參考文獻


[43] Injo Ok, Hyoung-sub Kim, Manhong Zhang, Chang-Yong Kang, Se Jong Rhee, Changhwan Choi, Siddarth A. Krishnan, Tackhwi Lee, Feng Zhu, Gaurav Thareja, and Jack C. Lee, “Metal gate-HfO2 MOS structures on GaAs substrate with and without Si interlayer”, IEEE Electron Device Lett. 27, 145 (2006).
[116] M. Hong, A. R. Kortan, P. Chang, Y. L. Huang, C. P. Chen, H. Y. Chou, H. Y. Lee, J. R. Kwo, M. W. Chu, C. H. Chen, L. V. Goncharova, E. Garfunkel, and T. Gustafsson, “High-quality nanothickness single-crystal Sc2O3 film grown on Si(111)”, Appl. Phys. Lett. 87, 251902 (2005).
[2] G. Baccarani, M. R. Wordeman, and R. H. Dennard, “Generalized Scaling Theory And Its Application To A 1/4 Micrometer MOSFET Design”, IEEE Trans. Electron Devices 31, 452 (1984).
[3] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, and G. Timp, “The electronic structure at the atomic scale of ultrathin gate oxides”, Nature (London) 399, 758 (1999).
[4] J. B. Neaton, D. A. Muller, and N. W. Ashcroft, “Electronic Properties of the Si/SiO2 Interface from First Principles”, Phys. Rew. Lett. 85, 1298 (2000).

延伸閱讀