透過您的圖書館登入
IP:3.142.197.212
  • 學位論文

具nitrite 配位基之雙亞硝基鐵錯合物 (DNICs): 藉由{Fe(NO)x} (x =1, 2) 模組活化nitrite 轉換形成一氧化氮 (NO)

Nitrite-Containing Dinitrosyl Iron Complexes (DNICs): Conversion of nitrite into NO promoted by {Fe(NO)x} (x =1, 2) motif

指導教授 : 廖文峯

摘要


In contrast to the four-coordinate tetrahedral {Fe(NO)2}9 DNICs with EPR g value as 2.03, the newly synthesized non-classical six-coordinate {Fe(NO)2}9 DNIC [(1-MeIm)2(2-ONO)Fe(NO)2] (1-MeIm = 1-methylimidazole) (1-Me) displays an EPR signal g = 2.013. The temperature-dependent reversible transformation occurs between the six-coordinate chelating nitrito {Fe(NO)2}9 DNIC 1-Me and the four-coordinate monodentate nitrito {Fe(NO)2}9 DNIC [(1-MeIm)(ONO)Fe(NO)2] (2-Me). PPh3 promotes oxygen atom transfer of the chelating nitrito under mild condition to generate, describing as nitroxyl (NO—) coordinative addition to the {Fe(NO)x} (x = 1, 2) motif, {Fe(NO)2}9 DNIC [PPN][(ONO)2Fe(NO)2] (6) and {Fe(NO)2}10 DNIC [(1-MeIm)(PPh3)Fe(NO)2] (3). The biomimetic reaction cycle centered on the iron site may be useful for describing a potential mode of nitrite activation involving the dynamic equilibrium, the Fe-NO— (nitrite-to-nitroxyl conversion) step, and the histidine(s) serving as a role in modulating the activation properties of iron center. The result deciphers that the non-classical six-coordinate nitrite-containing {Fe(NO)2}9 DNIC 1-Me and {Fe(NO)}7 MNIC [PPN]2[(ONO)3(2-ONO)Fe(NO)2] (5) may act as an active center to trigger the transformation of nitrite into nitric oxide in biological systems. The dynamic equilibrium between DNIC 1-Me and DNIC 2-Me implicates that the initial nitrite activation may take place via its reversible chelating of a nitrite, which may play a crucial role in subtly tuning NO homeostasis in hypoxia condition.

參考文獻


24. (a) Tsou, C.-C.; Lin, Z.-S.; Lu, T.-T.; Liaw, W.-F. J. Am. Chem. Soc. 2008, 130, 17154-17160. (b) Lu, T.-T.; Tsou, C.-C.; Huang, H.-W.; Hsu, I-J.; Chen, J.-M.; Kuo, T.-S.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2008, 47, 6040-6050. (c) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2008, 47, 2196-2204. (d) Tsou, C.-C.; Lu, T.-T.; Liaw, W.-F. J. Am. Chem. Soc. 2007, 129, 12626-12627. (e) Tsai, M.-L.; Hsieh, C.-H.; Liaw, W.-F. Inorg. Chem. 2007, 46, 5110-5117. (f) Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799-8806. (g) Tsai, M.-L.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6583-6585. (h) Hung, M.-C.; Tsai, M.-C.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041-6047. (i) Chen, T.-N.; Lo, F.-C.; Tsai, M.-L.; Shih, K.-N.; Chiang, M.-H.; Lee. G.-H,; Liaw, W.-F. Inorg. Chimi. Acta 2006, 359, 2525-2533. (j) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872-5881. (k) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159-5167.
4. Lundberg, J. O.; Weitzberg, E.; Gladwin, M. T. Nat. Rev. Drug Disc. 2008, 7, 156-167.
17. Hitchman, M. A.; Rowbottom, G. L. Coord. Chem. Rev. 1982, 42, 55-130.
22. Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.
References

延伸閱讀