透過您的圖書館登入
IP:3.19.31.73
  • 學位論文

應用於神經訊號偵測之軟性奈米碳管電極

Flexible Carbon Nanotube Electrode for Neuronal Recording

指導教授 : 游萃蓉

摘要


Si-based MEMS-electrodes have been employed widely to investigate the physiological functions of the brain. However, the rigid Si materials easily damaged the target tissues and consequently will be an obstacle for the long-term usage recording application. This research is to use polyimide flexible substrates to resolve above damaging issue and integrated carbon nanotubes (CNTs) as the recording materials onto the flexible substrates. Results show that CNTs were successfully grown on flexible polyimide substrates at  400 °C as electrodes for extracellularly neuronal recording. The electrical charge transfer and electrochemical properties of CNTs electrodes were significantly enhanced by UV-ozone exposure, which induced the C-O, C=O, O–C=O bonds formation on CNTs lowering CNT/electrolyte interfacial impedance and increasing interfacial capacitance. Demonstrations of good biocompatibility, durability, adhesion, and neuronal recording capabilities suggest this flexible UV-ozone modified CNT electrode a promising candidate for long-term neuronal recording/stimulation applications.

並列摘要


由微機電方法所製作的矽電極,已被廣泛應用於研究腦神經的電生理功能。然而此尖硬的矽材料,容易使所偵測的神經組織受損,此對於未來長時間的訊號偵測應用將會造成極大的阻礙。本研究將對議題而改善,使用軟性基材(polyimide)來取代尖硬的矽材料,並利用奈米碳管為主要的感測材料取代矽電極而製作出軟性奈米碳管電極。 本研究結果顯示奈米碳管可成功在低於 400°C成長於軟性基材(polyimide)上,且成功製成軟性奈米碳管電極紀錄到神經訊號。且軟性奈米碳管電極的電傳遞及電化學能力可利用紫外線臭氧處理而有進一步的提升。實驗結果顯示,紫外線臭氧處理會在奈米碳管外管璧上形成 C-O, C=O, O–C=O 化學鍵結, 進一步降低奈米碳管與電解質溶液之間的電阻抗及提升介面電容。除此之外,紫外線臭氧處理之軟性奈米碳管電極具有好的生物相容性,黏附力,大氣下保存能力,及良好神經訊號偵測能力,顯示本研究所研發之軟性奈米碳管電極具有極大潛力於未來長時間神經訊號偵測應用。

參考文獻


[48] Li, P.; Lim, X.; Yanwu, Z.; Yu, T.; Ong, C. K.; Shen, Z.; Wee A. T. S.; Sow, C. H. J. Phys. Chem. B 2007, 111, 1672.
[42] Wang, C. Y.; Chen, T. H.; Chang, S. C.; Chin, T. S.; Cheng, S. Y. Appl. Phys. Lett. 2007, 90, 103111.
[32] Nguyen-Vu, T. D. B.; Chen, H.; Cassell, A. M.; Andrews, R.; Meyyappan, M.; Li, J. Small 2006, 2, 89.
[5] Loeb, G. E.; Peck, R. A.; Martyniuk, J. J. Neurosci. Methods 1995, 63, 175.
[6] Robinson, D. Proc. IEEE 1968, 56, 1065.

延伸閱讀