透過您的圖書館登入
IP:3.138.134.107
  • 學位論文

光鉗操控微生物蝕刻銅金屬

Etching Copper by Microbes under Optical Tweezers

指導教授 : 賀陳弘

摘要


摘要 生物加工為微加工開啟了新的方向。目前半導體產業以銅製程為主,本研究即開發微生物在微加工的應用,使用微生物做為工具,對銅工件進行分解,並利用雷射光鉗及微流道來控制微生物的移動,形成加工位置。目前已有許多文獻指出氧化亞鐵硫桿菌、及氧化硫硫桿菌擁有運用在微生物蝕刻金屬上的潛力。在本研究中將會使用此兩種微生物來評估材料移除加工的表現,並量測金屬被移除的深度。本論文實驗分為三個部分:量測光鉗對此二菌的夾持效率、觀測Nd:YAG雷射對氧化硫硫桿菌的傷害,以及以光鉗抓取此二菌進行銅金屬加工。實驗結果發現,在雷射功率為450 mw輸出下光鉗對氧化硫硫桿菌及氧化亞鐵由桿菌之拖拉速度分別為 與 。而氧化硫硫桿菌在900 mw光鉗夾持下持續3小時,其活動力並未衰減;氧化硫硫桿菌在光鉗的挾持下仍對銅金屬有蝕刻能力,最大蝕刻深度為80 nm。Nd:YAG雷射在氧化亞鐵流桿菌菌液以及無菌上清液之照射區會產生銅金屬的堆積,本研究利用此現象成功的在銅片上寫出所預期的英文字母。

並列摘要


Abstract Biomachining has provided a new vision of the property of micromachining. Presently, copper processing is the main stream in semiconductor industry. The main purpose of this research is the application of microorganism in micromachining of copper workpiece. Optical tweezers and microfluidic channel are used for manipulating microorganism. Thiobacillus ferrooxidans and thiobacillus thiooxidans have proved their potential for etching metal. In this study, two bacteria mentioned above are evaluated for material removal. There are three parts in this study, including the measurement of the tweezing efficiency, the investigation of the possible damage to thiobacillus thiooxidans under Nd:YAG laser and biomachining copper by microbers under optical tweezers. It is noted that thiobacillus thiooxidans and thiobacillus ferrooxidans were moved at and by optical tweezers with 450 mw of laser power. The activity of thiobacillus ferrooxidans has not been weakened at 900 mw of laser power lasting for 3 hours. The depth of the metal removal is measured. From the results of the experiment, thiobacillus thiooxidans show a machining depth of 80 nm in copper under the laser of tweezers. The accumulation of copper by thiobacillus ferrooxidans and the extracellular polymeric substances irradiated by Nd:YAG laser was firstly observed. The alphabet was successfully written on the copper sheet by their method in the study.

參考文獻


[18] M.P. Silverman, (1967) “Mechanism of bacterial pyrite oxidation”, J Bacteriol Vol. 94 , 1046-1051.
[1] A. Ashkin, “Acceleration and Trapping of Particle by Radiation Pressure,” Phys. Rev. Lett, Vol. 24, P. 256, 1970.
[2] A. Ashkin and J.M. Dziedzic, (1971) “Optical levitation by radiation pressure,” Appl. Phys. Lett., Vol. 19, P. 283.
[3] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm and S. Chu, (1986) “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles, Opt. Lett. Vol. 11, P. 288.
[4] A. Ashkin, J.M. Dziedzic, and T. Yamane, (1987) “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, VOL 330.

被引用紀錄


張慧貞(2017)。高中生休閒參與、復原力與學習適應關係之研究-以桃園市為例〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201700216
林政龍(2006)。臺北市青少年的休閒參與特性對生活適應之影響〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-0712200716134756
陳啟科(2007)。微流體振盪器研發與生物螢光法檢測〔博士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1411200715083575

延伸閱讀