透過您的圖書館登入
IP:44.197.251.102
  • 學位論文

新多苯環材料合成與應用以及高效率有機發光二極體之開發研究

Synthesis and Applications of New Polycyclic Aromatic Hydrocarbons (PAH) Materials and Development of Highly Efficient Materials in OLEDs

指導教授 : 劉瑞雄

摘要


本篇論文主要分為三章:第一章是開發新型小型多環芳香材料,並評估材料可應用性;第二章是將開發的小型多環芳香材料分子深入的應用在深藍光的有機發光二極體材料上;第三章是設計合成一系列銥錯合物,並對它們OLED元件與基本物理特性作探討。 第一章: 我們合成一系列小型多芳香環分子,並利用它們的易於修改結構的特性,藉此可以大範圍修改它們電子能階(HOMO、LUMO)。利用我們的方法,可以合成2,3,6,7-四苯基取代蒽的起始物,並在9,10位置分別引進苯基、炔基與氨基的取代基。這些簡單的結構修改可以有效率的修改化合物的放光波長,也大幅增加它們的量子產率。如此可以擁有可調性多變的能隙小分子相信可以廣泛應用在材料化學上。 第二章: 我們合成一系列2,3,6,7,9,10-六苯基蒽,並以此材料作為有機發光二極體的深藍光客發光體材料。藉由修改在9,10位置的苯基上氟或烷基取代,最大放光波長介於439 nm ~ 453 nm,相對量子效率在53 % ~ 74 %,HOMO與LUMO在5.40 eV ~ 5.70 eV與2.58 eV ~2.89 eV之間。這些六苯基蒽衍生物熱分解溫度皆高於300℃。我們以1bb為摻雜物元件,EQE可以達到5.3% (4.83 cd/A),光色在深藍光領域CIEx, y(0.14, 0.10);另外,經過元件改良後,以4a為摻雜物元件EQE可達到6.7% (7.52 cd/A),光色在CIEx, y(0.14, 0.13)。 第三章: 我們設計並合成一系列6-氟異喹靈-1-苯基的銥錯合物,利用取代基影響來微調控放光波長(607 nm ~ 637nm)與電子能階,並根據其對放光波長影響的結果來揭露不同位置的取代基對光色的影響。在這些氟取代錯合物(1i ~ 8i)中,以6i為客發光體材料的元件有最好的效率,效率可以達到17.63% (19.88 cd/A),光色在CIEx,y(0.65, 0.33)。

並列摘要


This thesis describes the preparation and tuning of photoelectronic properties of two classes of polycyclic aromatic hydrocarbon (PAH) and Ir-bearing isoquinoline complexes. For sake of ease of better discussion, this thesis has been divided into three chapters. Chapter1 The work presented in this chapter serves as the first demonstration that structural modification of small PAH produces a great alteration of the electronic states, giving HOMO–LUMO gaps over a wide range. In our approach, the anthracene framework was attached to four phenyl groups at the 2,3,6,7 positions, and two additional phenyl, alkynyl and diphenylamino groups at the 9, 10 positions. Such substituent modification not only effectively tunes the emission wavelength, but also enhances fluorescent quantum yields. Such PAH with diverse energy gaps should have widespread applications in materials chemistry. (Chem. Commun., 2009, 6961) Chapter2 The chapter 2 demonstrates that the 2,3,6,7,9,10-hexaphenylanthracene-based derivatives were synthesized to serve as deep-blue dopants in organic EL devices. The emissions of fluorophores, fine-tuned from 439 to 453 nm with varied substituted phenyl rings attached to the anthracene core, produced PL quantum yields of 53–74% in solution. These blue dopants in dilute solutions showed no spectral red shift with increasing solvent polarity; the emission color of dopants is thus insensitive to the polarity of the medium. The HOMO、LUMO energy levels are 5.40–5.70 eV and 2.58–2.89 eV, respectively. These blue dopants undergo thermal decomposition at temperatures greater than 300 °C. The 1bb-doped EL devices attained an EQE as much as 5.3% (4.83 cd/A) with CIEx, y (0.14, 0.10);After optimizing the device configuration, the efficiency of 4a-doped EL devices reached 6.7% (7.52 cd/A) with CIEx, y (0.14, 0.13). (J. Mater. Chem., 2011, 21, 8122) Chapter3 We designed and synthesized a series of Ir-phenyl-isoquinolino complexes with varied substituent on isoquinoline or phenyl groups to alter the emission wavelength (607 nm ~ 637nm) and the electronic states. According to result of the emission, we revealed the effect of substituent at different position on phenyl group. Among these fluoronated complexes 1i ~ 8i, the efficiency of 6i-doped device is superior to others. It show maximum external quantum efficiencies as high as 17.63% (19.88 cd/A) at CIEx, y (0.65, 0.33).

參考文獻


8.(a) S. Tao, Z. Peng, X. Zhang, P. Wang, C. –S. Lee, S. –T. Lee, Adv. Funct. Mater., 2005, 15, 1716; (b) C. Tang, F. Liu, Y. –J. Xia, L. –H. Xie, A. Wei, S. –B. Li, Q. –L. Fan, W. J. Huang, J. Mater. Chem., 2006, 16, 4074; (c) M. Y. Lo, C. Zhen, M. Lauters, G. E. Jabbour and A. Sellinger, J. Am. Chem. Soc., 2007, 129, 5808; (d) K. -C. Wu, P. -J. Ku, C. -S. Lin, H -T. Shih, F. -I. Wu, M. -J. Huang, J. -J. Lin, I. -C. Chen, C. -H. Cheng, Adv. Funct. Mater., 2008, 18, 67; (f) S. Tao, T. Zhou, C. -S. Lee, X. Zhang, S. -T. Lee, Chem. Mater., 2010, 22, 2138.
6.(a) H. –T. Shih, C. –H. Lin, H. –S. Shih, H. –C. Cheng, Adv. Mater., 2002, 14, 1409; (b) J. -Y. Yu, M. -J. Huang, C. -H Chen, C. -S. Lin, C. -H. Cheng, J. Phys. Chem. C, 2009, 113, 7405; (c) H. P. Rathnayake, A. Cirpan, Z. Delen, P. M. Lahti, F. E. Karasz, Adv. Funct. Mater. 2007, 17, 115; (d) H. P. Rathnayake, A. Cirpan, P. M. Lahti, F. E. Karasz, Chem. Mater. 2006, 18, 560.
9.(a) M. T. Lee, H. H. Chen, C. H. Liao, C. H. Tsai, Appl. Phys. Lett., 2004, 85, 3301; (b) M. H. Ho, Y. S. Wu, S. W. Wen, M. T. Lee, T. M. Chen, C. H. Chen, K. C. Kwok, S. K. So, K. T. Yeung, Y. K. Cheng, Z. Q. Gao, Appl. Phys. Lett., 2006, 89, 252903.
10.(a) M. Uchida, C. Adachi, T. Koyama, Y. Taniguchi, J. Appl. Phys., 1999, 86, 1680; (b) F. -I. Wu, P. -I Shih, Y. -H. Tseng, G. -Y. Chen, C. -H. Chien, C. -F. Chu, Y. -L. Tung, Y. Chi, A. K. -Y. Jen, J. Phys. Chem. B, 2005, 109, 14000.
12. (a) M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, Adv. Mater., 2005, 17, 2493; (b) Z. Q. Gao, B. X. Mi, C. H. Chen, K. W. Cheah, Y. K. Cheng, W. -S. Wen, Appl. Phys. Lett., 2007, 90, 123506.

延伸閱讀