透過您的圖書館登入
IP:18.188.181.58
  • 學位論文

Application of high mobility molybdenum doped indium oxide (IMO) thin films in organic solar cell

高遷移率之氧化銦鉬薄膜應用於有機太陽能電池之研究

指導教授 : 吳孟奇

摘要


In recent years, transparent conductive films are very popular in optoelectronic industry. More and more different conductive thin films have been extensive researched. The main optical products such as solar cells, light emitting diodes and flat panel displays are all closely related with the transparent conductive glass. Therefore, developing a novelty generation of conductive thin films is necessary. Indium molybdenum oxide (IMO) now is deeply attentive because of its high electron mobility and low resistivity. It also effectively improves optical transmission in the NIR region. This thesis would discuss about deposition of IMO thin films by using co-sputtering prepared on glass substrate. Vary sputtering power ratio to get different proportions of IMO thin films. After deposition, use annealing process to improve the property of IMO thin films. From material analysis, it shows that the more Mo contents, the lower optical transmission investigates. The power ratio of In2O3/Mo at 60/6 has better characteristics. At this time, the average mobility is about 10 cm2/Vs at room temperature. Then we varied the substrate temperature to deposit thin films. The XRD spectra shows the substrate temperature at 225℃ has the best crystalline. If the substrate temperature is over heat, the thin film of crystalline would become weak; the resistivity is significantly increased and the optical transmission would also reduce. After annealing treatment, the as-deposited amorphous films become crystalline. The (222) orientation of the In2O3 crystal grew more predominantly apparently. The experimental results show the annealing temperature at 300 ℃ has the best feature of thin films. The lowest resistivity is 3.55 × 10-4 Ω-cm and the highest mobility is 41.56 cm2/Vs. By the application, we used IMO thin film applied to organic solar cell. In active layer, the donor material is P3HT, while the acceptor material is PCBM. The results indicate that the power ratio at 60/6 and the annealing time at 140s have the best efficiency up to 3.7755%. The fill factor at this time increased to 66.38% and the short circuit current up to 9.4794mA/cm2. By the above results, the characteristics of IMO thin film have great impact on the efficiency of organic solar cell.

並列摘要


近年來,透明導電薄膜在光電產業領域中極受歡迎,許多不同的導電薄膜被廣泛深入的研究。主要的光電產品如太陽能電池、發光二極體、平面顯示器等都與透明導電玻璃息息相關。所以發展新一代的導電薄膜是必要的。氧化銦鉬(Indium molybdenum oxides, IMO)薄膜近年來深深的受到重視,因其具有高電子遷移率和低電阻率的特性,能有效的提高近紅外光區域的穿透率。本論文中主要探討利用RF磁控濺鍍法在玻璃基板上製備IMO薄膜。以共濺鍍的方式改變氧化銦和鉬金屬靶的濺鍍功率比例,以得到不同比例的氧化銦鉬薄膜。製備薄膜完成後再進行退火處理,使能更進一步改善薄膜的性質。 由材料分析方面的實驗結果可知,隨著Mo含量越多,其穿透率相對而言越低。在常溫之下載子遷移率平均大約在10 cm2/Vs。In2O3/Mo功率比在60/6時候有較好的特性。接著改變基板溫度,由XRD量測中可得知基板溫度在225℃的結晶性最好。若溫度過高,由XRD、電性、光性皆可得知薄膜的結晶性變差,電阻率很明顯升高,穿透率也跟著降低。接著進行退火的處理。在退火之後,所有的鍍層均往最低能量的優選方向成長。其主要的結晶面均為(222)。實驗結果可知退火溫度在300℃時薄膜有最佳特性,電阻率最低為3.55×10-4 Ω-cm,最高電子遷移率為41.56 cm2/Vs。 由材料應用方面,將IMO薄膜應用在有機太陽能電池。其中在作動層中,施體材料為P3HT,而受體為PCBM。由實驗結果得知,在60/6時退火時間140s時有最好的效率可高達3.7755%。此時的填充因子提升至66.38%,斷路電流則可達9.4794 mA/cm2。由以上結果可知,IMO薄膜的特性對有機太陽能電池的效率影響極大。

參考文獻


[3] Y. Meng, X. Yang, H.X. Chen, J. Shen, Y.M. Jiang, Z.J. Zhang, and Z.Y. Hua, “A new transparent conductive thin film In2O3 :Mo”, Thin Solid Films, vol. 394, pp. 218-222 (2001).
[4] S. Calnan, and A.N. Tiwari, “High mobility transparent conducting oxides for thin film solar cells”, Thin Solid Films, vol. 518, pp. 1839-1849 (2010).
[5] S. Calnan, H.M. Uphadhyaya, S. Buecheler, G. Khrypunov, A. Chirila, A. Romeo, R. Hashimoto, T. Nakada, and A.N. Tiwari, “Application of high mobility transparent conductors to enhance long wavelength transparency of the intermediate solar cell in multi-junction solar cells”, Thin Solid Films, vol. 517, pp. 2340-2343 (2009).
[6] S. Parthiban, V.Gokulakrishnan, K.Ramamurthi, E.Elangovan, R.Martins, E. Fortunato, and R.Ganesan, “High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications”, Solar Energy Materials & Solar Cells vol. 93 pp. 92-97 (2009)
[9] Kevin M. Coakley and Michael D. McGehee, “Conjugated Polymer Photovoltaic Cells”, Chem. Mater. vol. 16 pp. 4533-4542, (2004).

延伸閱讀