透過您的圖書館登入
IP:18.213.4.140
  • 學位論文

多壁奈米碳管對纖維補強高分子預浸材積層板複合材料機械性質與扭轉疲勞特性之研究

Study on Mechanical Properties and Torsion Fatigue Behavior of Multi-Wall Carbon Nanotubes for Fiber Reinforced Polymer Laminate Prepreg Composites

指導教授 : 葉銘泉

摘要


在綠色能源抬頭的世代裡,風力是台灣亦是世界不可忽視的一項綠色能源,尤其是在有風城盛名的新竹更是要極力發展。以往的風力機皆以水平式為主,其缺點必須擁有良好風場、寬闊的地點、噪音…等,本研究主要著重於探討小空間、小功率、任意風向發電之垂直型風力發電機葉片材料性質探討,並利用輕量化、高強度之複合材料取代過往的金屬材料。 現今由於奈米碳管具有質量輕、導電性、高熱傳導度及高熱穩定性等特殊物理特性以及許多潛在的應用如航空、航太、電磁波遮蔽(EMI)材料及靜電釋放材料(ESD) …等上。本研究旨在利用多壁奈米碳管做為補強材(Reinforcement),環氧樹脂為基材(Matrix)之碳纖維積層板複合材料於葉片承受垂直型風力機運轉之靜態機械性質及動態扭轉疲勞特性研究,並探討添加不同比例之多壁奈米碳管對積層板複合材料機械性質與扭轉疲勞壽命影響,且觀察積層板複合材料遭受到不同溫度、濕度與熱循環條件下之抵抗能力,最後以SEM觀察積層板複合材料之破壞斷面驗證其破壞機制。 本研究利用高強度超音波震盪來分散環氧樹脂與多壁奈米碳管溶液,並運用超音波之空蝕效應與高轉速機械攪拌將多壁奈米碳管溶於EPO-622環氧樹脂中,再採用抽真空技術來排除氣泡,並添加多壁奈米碳管含量為0wt%、0.5wt%、1.0wt%、1.5wt% (wt%是與環氧樹脂重量之比值)進行彎曲測試、層間剪切強度、扭轉強度與扭轉疲勞測試,並觀察多壁奈米碳管在碳纖維/環氧樹脂積層板複合材料中之影響。在複合材料製程上採用平織碳纖維織布與環氧樹脂並利用熱壓成型製作積層板複合材料。當多壁奈米碳管添加量達1.5wt%時,在靜態之機械性質與動態之疲勞測試都有最佳的提升量,可以發現添加多壁奈米碳管對碳纖維/環氧樹脂複合材料有顯著的提升效果。在彎曲測試中,1.5wt%多壁奈米碳管添加量之彎曲強度與彎曲模數與未添加多壁奈米碳管之複合材料分別提升約8.97%與11.45%,另外,層間剪切強度則提升約10.74%。而根據扭轉疲勞週次之實驗結果,利用統計學最小平方法得到有加添加多壁奈米碳管與沒添加之積層板複合材料疲勞壽命破壞線性迴歸曲線,可發現多壁奈米碳管對於扭轉疲勞壽命有相當顯著之提升。

並列摘要


Wind power is an inevitable green power in the world and Taiwan in this century, especially at Hsinchu where is called as “Wind City”. The conventional horizontal-axis wind turbine has some disadvantages such as noise, requirement of stable wind field, vast location, etc. The investigation of material properties for blade of the low-power, small space and random-wind-directional power generating vertical-axis wind turbine is a major job in this study. Furthermore, the light-weight and high-strength composite adopted to fabricate wind turbine instead of lated metal materials is also researched in this study. Carbon nanotubes (CNTs) possess special physical characteristics such as strength, stiffness, light weight, electrical conductivity, highly thermal conductivity and thermal stability, etc. Meanwhile, there is a lot of potential applications such as the aviation, aerospace, electromagnetic interference (EMI) material and electrostatic discharge (ESD), etc. In this research, study of composites composed of multi-wall carbon nanotubes (MWCNTs) as reinforcement and epoxy resin as matrix of laminate for fabricating wind turbine was focused on influence on the static mechanical properties and dynamic torsion fatigue behavior on blade for vertical-axis wind turbine. Additionally, the effect of adding different proportions of MWCNTs of MWCNTs-containing composites on static mechanical properties and dynamic torsion fatigue life was also investigated. And observe the resistant ability of laminates composite treated to various temperatures, humidities and thermal cycles. Finally, morphologies for the fracture surface of laminates composite are observed by thermal emission schottky field scanning electrical microscopy (TFSEM). In this study, MWCNTs were spread evenly among epoxy resin by using high-efficiency ultrasonication, and MWCNTs were infused into EPO-622 epoxy resin adopting sonic cavitation and high-speed mechanical stirring. Finally, the residual air bubbles were removed using vacuum technique. Flexural, interlaminar shear strength (ILSS), torsion strength and torsion fatigue tests were performed on MWCNTs-filled (0.5wt%, 1.0wt% and 1.5wt% by epoxy resin weight) epoxy resin composites and MWCNTs-unfilled composites to identify the effect of adding MWCNTs on the mechanical properties of carbon fabric-epoxy resin composite. Woven carbon fiber and epoxy resin were adopted to fabricate composite using hot press molding. The highest improvement in static mechanical properties and dynamic torsion fatigue life was obtained when amount of MWCNTs of MWCNTs-containing composite reached to 1.5wt%. Flexural, interlaminar shear stress, torsion and torsion fatigue tests were performed to evaluate the effectiveness of MWCNTs addition on the mechanical properties and fatigue life of the carbon fabric-epoxy resin composite. The flexural strength and flexural modulus of the 1.5wt% MWCNTs-containing composite improved by 8.97% and 11.45%, respectively, compared to that of the composite without MWCNTs. Moreover, the 1.5wt% MWCNTs-containing carbon fabric-epoxy composite showed 10.74% enhancement on the interlaminar shear stress compared to that of composite without MWCNTs. Based on the experimental result, a linear damage model has been fitted with ordinary least squares (OLS) method for unfilled and MWCNTs-filled carbon fabric-epoxy composite. Additionally, the torsion fatigue lift was also improved significantly.

參考文獻


40. 蘇皇碩, “奈米碳管對碳/碳複合材料機械性質與物理性質之影響,” 國立清華大學動力機械工程學系碩士論文, (2010).
41. 王國書, “奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學動力機械工程學系碩士論文, (2007).
4. I. Al-Bahadly, “Building a wind turbine for rural home,” Energy for Sustainable Development, Vol. 13, (2009), pp.159-165.
5. L. Ferry , D. Perreux , D. Varchon and N. Sicot, “Fatigue Behaviour of Composite Bars Subjected to Bending and Torsion,” Composites Science and Technology, Vol. 59,(1999), pp.575-582.
6. N. H. Tai, C. C. M. Ma and S. H. Wu, “Fatigue Behaviour of Carbon Fibre/PEEK Laminate Composites,” Composites, Vol .26, (1995), pp. 551-559.

被引用紀錄


陳眉秀(2012)。石墨烯微片/環氧樹脂預浸材對碳纖維補強複合材料之機械性質與拉伸疲勞暨溫濕老化影響效應之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-2002201315102648
江柏賢(2012)。石墨/環氧樹脂複合材料之機電性質研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0908201218235925
林彥銘(2013)。改質石墨烯微片/多壁奈米碳管/纖維積層板複合材料機械性質暨扭轉疲勞之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-2511201311312667
林秀臨(2015)。多壁奈米碳管/石墨烯微片/氧代氮代苯并環已烷/環氧樹脂碳纖維積層板複合材料機械性質暨疲勞壽命之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0312201510243174
Hao, H. C. (2016). 奈米銀線/石墨烯之複材製備、熱電性質暨機械性質之研究 [master's thesis, National Tsing Hua University]. Airiti Library. https://www.airitilibrary.com/Article/Detail?DocID=U0016-0901201710345836

延伸閱讀