透過您的圖書館登入
IP:18.191.157.186
  • 學位論文

新型多芳香環材料分子之合成與應用於有機發光二極體、有機場效電晶體以及石墨烯成長之開發研究

Synthesis and Applications of New Polycyclic Aromatic Hydrocarbons and Development of OLEDs, OFETs and Graphene Growth

指導教授 : 劉瑞雄

摘要


摘要 第一章節:   我們設計並合成一系列小型多芳香環分子䓛 (chrysene),並利用易修飾取代基的特性,藉此可以調控它們的電子能階、放光波長及效率。經由我們設計的合成路徑,可以得到相較市售便宜的chrysene分子,再進一步合成3,6,9,12-四溴取代的起始物,並在3、6、9與12的四個位置分別引進苯基、炔基與氨基的官能基。經由官能基替換可改變化合物的發光波長及增加其量子產率,其螢光放光的波長為藍光範圍 (401−471 nm),而量子效率為 (0.44−0.87)。我們選擇chrysene衍生物I-6g作為客發光體應用於藍色螢光有機發光二極體 (OLED) 之元件,獲得優秀的外部量子效率高達6.31 %,並且有著合適的光色CIEx,y (0.13, 0.20) 與較低的啟動電壓3.0 V。 第二章節:   結合實驗室所建立的dibenzo[de,op]bistetracenes (DBBTs) 架構,我們設計並合成了一系列具有不同取代的衍生物,並將此材料於有機場效電晶體之應用。我們將2-, 10-位置上俱有甲基、叔丁基以及氟之DBBT分子製備成單晶,從X射線單晶繞射的結果我們可以瞭解各DBBT主體為近乎平面的結構且大部分衍生物為位移的π-π堆疊與人字型的排列;再將針狀的單晶作為有機場效電晶體之通道材料,進行電性量測。由於取代基的影響,各分子間的晶體堆疊的情形不同而有不一樣的電荷傳輸性質,其中以兩個甲基取代的結構II-4b之遷移率為最高,高達1.19 cm2 V-1 s-1,而電流開關比也達106。 第三章節:   我們設計與合成含硼與氮的多芳香環衍生物,藉由化學氣相沉積法 (CVD) 進行摻雜型石墨烯的成長,成功製備單晶與大面積的石墨烯,而後進行石墨烯物理性質的分析與量測。最後將轉移的硼摻雜的石墨烯使用圖紋化製程且替換OLED元件的ITO電極,以石墨烯作為陽極與磷光發光元件匹配並且擁有良好的發光效率,外部量子效率高達15%。

並列摘要


Abstract Chapter I: A short synthesis of unsubstituted chrysene is described to provide a cheap source of this compound. This chrysene was used to prepare 3,6,9,12-tetrabromochrysene, which was subsequently transformed into various 3,6,9,12-tetrasubstituted chrysenes bearing four aryl, alkynyl, or amino groups by means of the Suzuki, Sonogashira, or Buchwald−Hartwig coupling reaction, respectively. These substituents result in large bathochromic shifts in the chrysene absorption and emission spectra. These new chrysene derivatives show blue fluorescent emission (401−471 nm) with high quantum yields (0.44−0.87). One representative chrysene (I-6g) was used as a blue fluorescent emitter in an OLED device that showed an outstanding external quantum efficiency (η = 6.31 %) with blue emission [CIE (x, y) = (0.13, 0.20)] and a low turn-on voltage (3.0 V). Chapter II: A series of substituted dibenzo[de, op]bistetracenes (DBBTs) is prepared in short steps and their applications to organic field-effect transistors (OFETs) are described. These DBBT derivatives bear one or two methyl-, tert-butyl-, or fluoro groups at the 2-, 10-positions. X-ray diffraction studies reveal that the molecular structures of these DBBTs were planar with a shifted π–π stacking or herringbone-stacked type packing in the crystalline state. These substituents perturb the degree of stacking shift because of steric effect and dipolar interaction, consequently affecting the electronic coupling between the neighboring molecules. Needle-like single crystals of DBBT derivatives were prepared by vapor phase transfer method and used for the fabrication of single-crystal field-effect transistors (SCFETs). Theoretical calculation on these DBBTs has been performed to correlate the measured field-effect mobility with their molecular stacking. The SCFET of di-methyl derivative II-4b showed the highest hole mobility (1.19 cm2 V-1 s-1) with a current on/off ratio of 106. Chapter III: PAH derivatives with heteroatom (boron or nitrogen) have been synthesize and prepared. These molecules were used to grow doped graphene by chemical vapor deposition, then we got single-crystal graphene and large area graphene and measure their physical properties. Boron-doped graphene was patterned and used as anode in a phosphorescent OLED device that showed an outstanding external quantum efficiency (η = 15.0 %).

並列關鍵字

PAH OLED OFET Graphene

參考文獻


8. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, T. F. Heinz, Phys. Rev. Lett. 2008, 101, 196.
10. C.-C. Yeh, M.-T. Lee, H.-H. Chen, C. H. Chen, Proceedings of SID’04, 2004, May 23-28, 788.
19. (a) A. N. Aleshin, J. Y. Lee, S. W. Chu, J. S. Kim, Y. W. Park, Appl. Phys. Lett. 2004, 84, 5383. (b) R. W. I. d. Boer, T. M. Klapwijk, A. F. Morpurgo, Appl. Phys. Lett. 2003, 83, 4345. (c) Y. Takeyama, S. Ono, Y. Matsumoto, Appl. Phys. Lett. 2012, 101, 083303. (d) M. Watanabe, Y. J. Chang, S.-W. Liu, T.-H. Chao, K. Goto, M. IslamMd, C.-H. Yuan,; Y.-T. Tao, T. Shinmyozu, T. J. Chow, Nat. Chem. 2012, 4, 574.
28. R. S. Stoll, M. V. Peters, A. Kuhn, S. Heiles, R. Goddard, M. Bühl, C. M. Thiele, S. Hecht, J. Am. Chem. Soc. 2009, 131, 357.
17. H.-C. Shen, J.-M. Tang, H.-K. Chang, C.-W. Yang, R.-S. Liu, J. Org. Chem. 2005, 70, 10113.

延伸閱讀