透過您的圖書館登入
IP:44.210.107.64
  • 學位論文

透過大強子對撞機希格斯粒子相關產生過程探測非標準模型物理學

Probe BSM physics through Higgs related productions at the LHC

指導教授 : 張敬民
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


自從2012年開始,在大強子對撞機實驗中發現的希格斯粒子為我們打開了一扇了解宇宙本質的門。經過大強子對撞機第一階段實驗之後,幾乎所有跟希格斯粒子量測的分析,都指向這個新發現的粒子是標準模型裡的希格斯粒子。雖然標準模型非常符合實驗數據,還存在許多標準模型裡未解的問題,像是微中子質量,暗物質,階層問題,等 …,都啟發科學家進行更深的探討。目前大強子對撞機的實驗結果,因為對撞亮度不足,仍存在很大的誤差。更精準的量測跟希格斯粒子相關的產生過程,可使我們看清藏在質量125GeV玻色子背後的物理。希格斯玻色子成對產生過程,以能夠測量三希格斯自我作用耦合大小聞名,三希格斯自我作用耦合是希格斯作用力的重要元素。希格斯粒子成對產生和頂夸克湯川耦合,三希格斯自我作用耦合,ttHH新物理作用力相關。在這份研究中,我們將會探討這三個作用力並且考慮宇稱不守恆情況。希格斯粒子與頂夸克伴隨產生過程,和希格斯粒子與規範場耦合,頂夸克湯川耦合以及底夸克湯川耦合相關。並且在這個產生過程中,頂夸克湯川耦合和希格斯粒子與規範場耦合作用,彼此間有破壞性干涉作用。因此能夠測量出這兩個作用力強度。在這個論文中,我將會回顧兩個非標準模型物理模型,實驗結果,希格斯精確測量研究,以及幾個和希格斯粒子相關產生的過程:希格斯粒子成對產生,向量玻色子融合,單頂夸克希格斯粒子伴隨產生以及底夸克對希格斯粒子伴隨產生。

並列摘要


Since 2012, the discovery of the Higgs boson at the LHC opens a door for us to reveal the nature of this universe. After LHC Run I, almost all the analysis for the Higgs measurements shows the SM Higgs is the best-fit candidate. Even though the SM fit the data well, there are some unsolved problem, i.e. neutrino mass, dark matter, the hierarchy problem leading us go deeper. The large uncertainty due to the low luminosity give spaces to the BSM physics. Measurements for Higgs related processes open us a window to see what is behind this newly found about 125 GeV boson. Higgs-boson pair production is well known being capable to probe the trilinear self-coupling of the Higgs boson, which is one of the important ingredients of the Higgs sector itself. Pair production then depends on the top-quark Yukawa coupling $g_t^{S,P}$, Higgs trilinear coupling $lambda_{3H}$, and a possible dim-5 contact-type $ttHH$ coupling $g_{tt}^{S,P}$, which may appear in some higher representations of the Higgs sector. We take into account the possibility that the top-Yukawa and the $ttHH$ couplings involved can be CP violating. Associated production of the Higgs boson with a single top quark proceeds through Feynman diagrams, which are either proportional to the $hWW$, top-Yukawa, or the bottom-Yukawa couplings. It was shown in literature that the interference between the top-Yukawa and the gauge-Higgs diagrams can be significant, and thus the measurement of the cross sections can help pin down the sign and the size of the top-Yukawa coupling. In this thesis, I will review two BSM models, experimental results, Higgs precision studies and the works on Higgs related processes : Higgs pair production, vector boson fusion, single top and Higgs associated production and $bar{b} h$ production.

參考文獻


[22] P. Nath, private communication. P. Nath et al., work in progress.
[84] C. Han, X. Ji, L. Wu, P. Wu and J. M. Yang, JHEP 1404, 003 (2014) [arXiv:1307.3790 [hep-ph]]; U. Ellwanger, JHEP 1308, 077 (2013) [arXiv:1306.5541 [hep-ph]]; J. Cao, Z. Heng, L. Shang, P. Wan and J. M. Yang, JHEP 1304, 134 (2013) [arXiv:1301.6437 [hep-ph]]; B. Bhattacherjee and A. Choudhury, Phys. Rev. D 91, no. 7, 073015 (2015) [arXiv:1407.6866 [hep-ph]]. N. D. Christensen, T. Han and S. Su, arXiv:1203.3207 [hep-ph]; K. Hagiwara, J. S. Lee and J. Nakamura, arXiv:1207.0802 [hep-ph]; V. Barger, M. Ishida and W. -Y. Ke- ung, arXiv:1207.0779 [hep-ph]; M. Drees, arXiv:1210.6507 [hep-ph]; G. Belanger, U. Ellwanger, J. F. Gunion, Y. Jiang, S. Kraml and J. H. Schwarz, arXiv:1210.1976 [hep-ph].
[94] J. Chang, K. Cheung, J. S. Lee and C. T. Lu, in preparation.
[95] J. Chang, K. Cheung, J. S. Lee and C. T. Lu, JHEP 1405, 062 (2014) [arXiv:1403.2053 [hep- ph]].
[24] C. -F. Chang, K. Cheung, Y. -C. Lin and T. -C. Yuan, JHEP 1206 128 (2012), [arXiv:1202.0054 [hep-ph]].

延伸閱讀