透過您的圖書館登入
IP:18.219.236.62
  • 學位論文

線上監測腫瘤組織間液內金奈米粒子、過氧化氫、乳酸與葡萄糖之連線分析系統的開發與應用

Development of Hyphenated Systems for in Vivo Online Continuous Monitoring of Tumor Extracellular AuNPs, H2O2, Lactate, and Glucose

指導教授 : 孫毓璋
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


奈米藥物載體有助於提高抗癌藥物的傳輸效率,進而改善治療功效與降低副作用,然而現今在評估新開發奈米藥物的療效時,多數僅依賴觀察腫瘤大小與實驗動物的存活率,與搭配腫瘤組織內的載體總累積含量來評估藥物的傳輸情形,因此往往高估載體藥物的有效濃度與低估藥物本身的治療效果。為了克服上述難題,本研究分別結合抽壓導管取樣串連鐵氟龍管分離裝置與感應耦合電漿質譜儀,以及微透析取樣串連線上序列酵素衍生化程序與螢光分析儀,針對監測小鼠腫瘤組織間液內奈米藥物載體及指標性物種的分析需求,發展具有快速、連續與動態分析能力的自動化連線分析平台。 在完成上述連線分析系統的最佳化探討與系統效能驗證之後,本研究針對小鼠腫瘤組織細胞間液內之金奈米粒子藥物載體,進行線上連續偵測的工作,實驗結果顯示經聚二乙醇修飾之金奈米粒子確實有較好的癌細胞標定能力。此外,在針對小鼠腫瘤組織細胞間液中各項生理參數的分析監測上,本研究亦已完成開發可同時監控過氧化氫、乳酸與葡萄糖的線上螢光衍生化連線分析系統,用來觀測經原位注射刺激後,過氧化氫、乳酸與葡萄糖濃度的動態變化情形;上述結果亦說明本研究所建立的二套連線分析系統,確實具有監測活體動物腫瘤組織間液中金奈米粒子、過氧化氫、乳酸與葡萄糖動態變化趨勢的能力,預期藉由整合上述兩個新穎的線上分析系統,可為奈米藥物載體在藥物動力學與藥效動力學的量測上,提供嶄新的跨領域思維及技術平台。

並列摘要


Nano-sized drug carriers are capable of improving the transportation efficiency of anticancer drugs as well as reducing the therapeutic side effects. However, the efficacies of these newly developed candidates are so far assessed usually by observing the tumor volumes and the survival rate of treated animals, and their totally accumulated amounts in the whole tumor tissues. To overcome these limitations, we have constructed two novel analytical systems for online continuous monitoring of tumor extracellular gold nanoparticles (AuNPs), hydrogen peroxide (H2O2), lactate, and glucose in living mice by means of (i) combining push–pull perfusion (PPP) sampling, open-tubular fractionation scheme with inductively coupled plasma mass spectrometer, and (ii) hyphenating microdialysis sampling, sequentially enzymatic derivatization with online fluorescence spectrometer. After method’s optimization and validation, our acquired dynamic profiles not only indicated that the pegylated AuNPs had greater tendency toward extravasating into the tumor extracellular space but also revealed that our system possessed the ability to online sequentially determine the concentrations of the tumor extracellular H2O2, lactate, and glucose. Through combining these two online analytical systems, we believe that our integrated analytical platform can provide the new perspectives for in vivo studying the pharmacokinetics and pharmacodynamics of nano-sized drug carriers in future cancer diagnosis and therapeutic applications.

參考文獻


16. Qiao, W.; Wang, B.; Wang, Y.; Yang, L.; Zhang, Y.; Shao, P. Cancer therapy based on nanomaterials and nanocarrier systems. Journal of Nanomaterials 2010, 2010, 7.
3. 台灣行政院衛生福利部國民健康署. 民國102年主要死因分析. 2014.
4. World Cancer Report. 2014.
7. Doll, R.; Peto, R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. Journal of the National Cancer Institute 1981, 66, 1192-1308.
8. Colditz, G. A.; Sellers, T. A.; Trapido, E. Epidemiology—identifying the causes and preventability of cancer? Nature Reviews Cancer 2006, 6, 75-83.

延伸閱讀