透過您的圖書館登入
IP:18.191.108.168
  • 學位論文

醫護點檢驗應用之自攜氣動源式實驗室晶片裝置開發

Developing Lab-on-a-chip Devices with Self-contained Pneumatic Power in Point-of-care Testing Application

指導教授 : 程家維
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


We develop the novel single-use fluid transport means to deliver the sample and/or reagent to a fluidic channel, microreactor and/or a detection unit, thereby offering suitably flow rates coupled with minimal manual handling. Our fluidic actuating devices are able to pump a wide variety of fluids and gases and should be self-contained. Their applications for clinical chemistry, immunoassay and even genetic analysis are an area of active interest, for example point-of-care testing. In chapter 2, a vacuum capillary pneumatic actuation concept that can be used for point-of-care testing has been investigated. The vacuum glass capillaries are encapsulated within a laminated pouch and incorporated into the fluidic card. Vacuum glass capillaries broken by external force such as finger pressure; generate the pneumatic forces to induce liquid flow in the fluidic system. The sizes of vacuum capillary play a vital role in the pumping and metering functions of the system. The luteinizing hormone (LH) chromate- graphic immunoassay performances in the fluidic cards show consistency comparable to that obtained by manual micropipetting. The vacuum capillary pneumatic actuation will be applied in other complex handling step bioassays and lab-on-a-chip devices. In chapter 3, a pressurized gas capillary pneumatic actuation approach that can be used for point-of-care testing has been investigated. The pressurized gas glass capillaries are packaged within a PE tubing and incorporated into the fluidic chips. Gas glass capillaries broken by external force such as finger pressure, generate the pneumatic forces to drain liquid loaded in PE tubing into the fluidic chip. The carbonate dioxide gas of mixed chemicals in capillaries play a vital role in the pumping functions of the system. The C-reactive protein (CRP) fluorophore-linked sandwich immunoassay performances in the fluidic chips show consistency comparable to that obtained by manual syringe handling. The pressurized gas capillary pneumatic actuation will be applied in other complex handling steps involving saliva or blood sample preparation, nucleic acid assay and lab-on-a-chip devices. Chapter 4 provides a brief summary and future outlook.

並列摘要


吾人發展一次性使用的流體輸送工具,能夠以適當的流速將樣品或試劑送達微管道、微反應器和檢測區,同時減少人員的操作需求。所開發的流體制動裝置有自攜氣動力能夠輸送各類液體與氣體,可應用於臨床化學、免疫分析與基因檢測等領域例如醫護點檢驗等。 本文第二章中描述真空玻璃毛細管的制動概念,應用於醫護點檢驗實驗。將真空玻璃毛細管包封於護貝膜所製囊袋中,膠黏於內封免疫色層分析片的流體匣,真空玻璃毛細管藉由外力(如手指)折破後產生吸引定量液體流入免疫色層分析片上,進行呈色分析。真空玻璃毛細管產生的吸力具有輸送與定量液體的功能,量化分析在黃體形成素免疫色層分析片上呈色強度,證實真空玻璃毛細管所吸取液體效果與人工使用微量吸管一致。因此真空玻璃毛細管制動原理將可用於更複雜步驟的生物測定。 在第三章裡提出氣壓玻璃毛細管的制動概念,有別於上章的吸力,氣壓玻璃毛細管利用預封檸檬酸與碳酸氫鈉水溶液,密封後離心混合兩液體,產生內填二氧化碳氣壓的玻璃毛細管。毛細管膠封於聚乙烯膠管中,藉由手指力折破後產生推送力,將定量液體依序輸送到C-反應蛋白螢光免疫晶片中,量化分析在晶片中C-反應蛋白呈色螢光強度,證實氣壓玻璃毛細管所推送液體效果與人工使用注射器注入效果一致。因此真空玻璃毛細管制動原理將可用於更複雜步驟的分析如核酸檢測上。 簡要總結與未來研究方向列在文後第四章。

參考文獻


Chapter 1
3. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam and B. H. Weigl, Nature, 2006, 442, 412-418.
10. J. M. K. Ng, I. Gitlin, A. D. Stroock and G. M. Whitesides, Electrophoresis, 2002, 23, 3461-3473.
17. W. R. Rodriguez, N. Christodoulides, P. N. Floriano, S. Graham, S. Mohanty, M. Dixon, M. Hsiang, T. Peter, S. Zavahir, I. Thior, D. Romanovicz, B. Bernard, A. P. Goodey, B. D. Walker and J. T. McDevitt, PLoS Med., 2005, 2, 663-672.
19. D. J. Laser and J. G. Santiago, J. Micromech. Microeng., 2004, 14, R35-R64.

延伸閱讀