透過您的圖書館登入
IP:18.226.150.175
  • 學位論文

利用時間解析螢光光譜技術研究金屬奈米粒子與螢光分子其螢光增強效應之動力學

Study on the Interaction between Gold Nanoparticle and Fluorophore by Time-Resolved Fluorescence Spectroscopy

指導教授 : 陳益佳

摘要


我們利用二氧化矽當作間隙物控制染料與金奈米粒子之間的距離,而因孟加拉玫瑰紅(rose bengal, RB)的吸收與放光位置皆靠近金奈米粒子的共振吸收峰,故被選作染料。當RB接在二氧化矽金奈米子後,並溶於異丙醇溶劑,藉由靜態螢光以及時間解析螢光光譜技術研究螢光增強效應的動力學機制。我們合成45、65、80以及100 nm直徑的金奈米粒子,並且在外圍包覆不同厚度的二氧化矽,藉以了解粒徑以及距離對螢光增強效應的影響。由靜態螢光光譜證實,當RB接在金奈米粒子時,其螢光明顯地被增強,螢光增強效應隨距離,呈現先增後減的趨勢,而最佳的增強距離約為10 nm。在10 nm的距離下,45、60、80與100 nm的金奈米粒子,其螢光增強倍數為2.4、3.8、4.6與5.5,螢光增強效應也隨著粒徑變大而變大。當RB靠近金奈米粒子時,其生命期變短,且放光特性由原本的單指數衰減變成雙指數衰減,當兩者距離隔很遠時,RB又會變回單指數衰減。根據實驗結果與文獻資料,我們建構了動力學模型解釋金屬奈米粒子增強螢光效應。當RB被入射光或金奈米粒子激發到激發態後,RB如果耦合到金屬奈米粒子的明亮模式(bright mode),當RB將能量傳給金屬奈米粒子後,金屬奈米粒子可以放射光子至遠場,或將能量回傳至RB,使RB由基態到激發態。但如果RB是耦合到較高級數的共振模式時(dark modes),RB將能量傳給金屬奈米粒子,使此模式被激發後,會以熱釋解的方式將能量傳遞至環境。激發態的RB除了可將能量傳遞給金奈米粒子,也可能在金奈米粒子上產生誘導偶極,此時RB與誘導偶極皆會放光。除了將樣品溶於異丙醇,研究整體的螢光增強效應。也曾將樣品滴乾,使用螢光生命期影像顯微鏡研究單顆金奈米粒子的螢光增強效應。對於單顆的金奈米粒子,當RB靠近金奈米粒子時,除了螢光強度被增強外,其時間解析螢光光譜也呈現雙指數衰減。金奈米粒子的共振吸收峰以及RB非放光速率常數皆隨環境而改變。故對於溶在異丙醇的整體金奈米粒子或在空氣中的單顆金奈米粒子,其時間解析螢光光譜雖然在短距離時皆呈現雙指數衰減,但兩者的數值還是不盡相同。除了使用二氧化矽當作間隙物,也曾嘗試使用二氧化鈦或高分子控制距離。相較於RB接在二氧化矽金奈米粒子,當環境為二氧化鈦時,RB將能量傳遞給金奈米粒子的明亮模式的速率常數明顯地變快,猜測當環境為半導體時,RB較易將能量傳遞給金奈米粒子。

並列摘要


The interaction between gold nanoparticles (GNPs) with silica shell as spacer, Au@SiO2 NPs, and fluorophore rose bengal (RB) is studied using time-resolved spectroscopy. Varied sizes of GNPs with controlled thickness of silica shell were synthesized to investigate the effects on metal enhanced fluorescence. Fluorophore RB covalently connected to prefunctionlized silica surface has spectral overlapped with the plasmon resonance of gold nanoparticle. The enhancement factor for fluorescence displaying maximum at spacer separation ~ 10 nm is 2.4, 3.8, 4.6, and 5.5 for diameter 45, 65, 80, and 100 nm Au@SiO2 NPs, respectively. Biexponential decay of emission is observed for small thickness of spacer indicating multiple pathways for relaxation of the excited states. Both time constant τ1 and τ2 are consistently increased with increased separation of silica spacer. The fast component has the most amplitude at short spacer thickness and large NP sizes. The biexponential decay is explained that the back energy transfer of the bright modes of GNPs to fluorophore is nonnegligible. For 100 nm GNPs, we obtain that rate constant for energy transfer from RB to GNP is 9×106 to 2.0×1010 s-1 (bright + dark modes) for separation 5 nm to 45 nm, displaying a dependence to the separation of silica shell d-n with n  2.5. The backward rate constant is 3.5×109 to 4.9×109 s-1 for separation 5 nm to 18 nm.

參考文獻


1. des Francs, G. C.; Bouhelier, A.; Finot, E.; Weeber, J. C.; Dereux, A.; Girard, C.; Dujardin, E., Fluorescence Relaxation in the near-Field of a Mesoscopic Metallic Particle: Distance Dependence and Role of Plasmon Modes. Opt. Express 2008, 16, 17654-17666.
2. Bharadwaj, P.; Novotny, L., Spectral Dependence of Single Molecule Fluorescence Enhancement. Opt. Express 2007, 15, 14266-14274.
3. Anger, P.; Bharadwaj, P.; Novotny, L., Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002.
4. Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R., Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles. Nano Lett. 2007, 7, 2101-2107.
5. Ray, K.; Badugu, R.; Lakowicz, J. R., Polyelectrolyte Layer-by-Layer Assembly to Control the Distance between Fluorophores and Plasmonic Nanostructures. Chem. Mat. 2007, 19, 5902-5909.

延伸閱讀