透過您的圖書館登入
IP:3.142.144.40
  • 學位論文

多共振腔系統、藍寶石X光共振腔及建置時間解析繞射系統

Multi-cavity systems, sapphire X-ray resonators, and the construction of time-resolved X-ray diffraction system

指導教授 : 張石麟

摘要


本文主要包含三個部分,多共振腔系統、藍寶石X光共振腔及建置時間解析繞射系統,並對各部分理論基礎、實驗架構與實驗結果等,依序介紹。 在X光共振腔研究中,我們嘗試將多組共振腔集合成一多共振腔系統。而由兩組共振腔組合而成之三單晶板共振腔,我們成功量測到三單晶板共振腔之等效共振能譜,該能譜於背向繞射發生之區域間,僅包含單一共振鋒,且其鋒寬僅 0.79 meV。 由於藍寶石單晶擁有優於矽單晶之繞射特性,因此我們嘗試了藍寶石單晶X光共振腔之實驗。雖然藍寶石單晶內部的晶體缺陷以及共振腔外型的偏差造成藍寶石共振腔之共振效率下降,我們還是成功的量測到藍寶石共振腔的共振能譜,而所對應之 finesse 值約為 1.92。 而本文章亦對已建置完成之時間解析繞射實驗系統,包括儀器配置、時間控制流程等諸多細節進行介紹。除此之外,我們亦使用 GaAs(004)進行時間解析繞射實驗之測試,其結果顯示時間解析實驗系統可以確實運作。

並列摘要


This thesis aims to construct a time-resolved X-ray diffraction system with an improved optics, including multi-cavity systems and sapphire X-ray resonators. The fundamental theorems, experimental setups, and measurements are described by following the order of multi-cavity system, sapphire X-ray resonator, and time-resolved X-ray diffraction system. The silicon multi-cavity systems consist of more than one hard X-ray Fabry-Parot resonators (FPRs). Backward diffraction (12 4 0) at 14.4388 keV is employed to reflect the incident X-ray beam in FPRs. In practice, a three-mirror FPR that combines two FPRs were realized, of which the measured effective resonance spectrum included only one isolated resonance peak in the energy range of the backward diffraction. The bandwidth of the isolated resonance peak was improved to 0.79 meV. For sapphire crystal wafers, because of low crystal symmetry and shorter extinction length of the back reflection (0 0 0 30) at 14.3147 kev, sappire FRRs are superior to that made of silicon wafers. Experimantally, the cavity resonance experiments of sapphire FPRs have been carried out. Even though the defects in sapphire wafers and curved surfaces of crystal plates lowered the resonance efficiency, distinct resonance spectra of sapphire FPRs have been observed. For the time-resolved X-ray diffraction system, the layout of the arranged instruments, the synchronization timing control processes between the synchrotron X-rays and pumping laser pulses are reported. The standard test experiments, the time-resolved X-ray diffraction of GaAs(004), were also successfully demonstrated.

並列關鍵字

無資料

參考文獻


[7] 邱茂森. X光共振腔之24光動力繞射計算. 國立清華大學物理所博士論文, 2008.
[49] 劉鴻霖. 藍寶石晶體缺陷之X光位像術研究. 國立清華大學物理所碩士論文, 2012.
[47] 黃亮諭. 藍寶石X光共振腔之可行性研究. 國立清華大學物理所碩士論文, 2009.
[9] 張櫻議. X光曲面共振腔在背向繞射下的異常聚焦之研究. 國立清華大學物理所博士論文, 2011.
[42] Yoshimitsu Fukuyama, Nobuhiro Yasuda, Jungeun Kim, Haruno Murayama, Takashi Ohshima, Yoshihito Tanaka, Shigeru Kimura, Hayato Kamioka, Yutaka Moritomo, Koshiro Toriumi, Hitoshi Tanaka, Kenichi Kato, Tetsuya Ishikawa, and Masaki Takata. Ultra-high-precision time control system over any long time delay for laser pump and synchrotron x-ray probe experiment. Reivew of Scientic Instruments, 79(045107), 2008.

被引用紀錄


陳仕倫(2015)。斜向入射之藍寶石X光共振腔之設計〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2015.00244
劉星佑(2015)。時間解析X光繞射實驗: 雷射激發應變在分層系統內傳遞之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0312201510283119

延伸閱讀