透過您的圖書館登入
IP:3.129.247.196
  • 學位論文

導電高分子(聚(鄰-胺基苯甲基醚)、聚咇咯) / 蒙脫土奈米複合材料之合成與性質研究

Preparation and Properties of Poly(o-methoxyaniline)-Clay as well as Polypyrrole -Clay Nanocomposite Materials

指導教授 : 葉瑞銘
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究之主題包含兩個部分:在第一部份,一系列之PMA / 蒙脫土奈米複合材料由鄰-胺基苯甲基醚和蒙脫土以in-situ polymerization的方法進行氧化聚合而製得。所合成之材料以紅外線光譜 (FTIR),X光繞射儀 (XRD) 及穿透式電子顯微鏡 (TEM) 進行初步鑑定。實驗的結果顯示,蒙脫土在高分子基材中的分散已達奈米級,而經由 TGA 與 DSC 的量測,得知蒙脫土的導入使得高分子的聚合度減少,因而使整體材料的熱裂解溫度降低。另一方面,由防腐蝕測試的結果得知,蒙脫土的加入確實可提升高分子基材在金屬防腐蝕應用上的效果。 在本實驗中,另探討插層型黏土在 PMA / 黏土奈米複合材料中所扮演的晶核角色,所合成之材料使用廣角粉末 XRD、DSC 來觀察其高分子結晶性的變化,最後再以 POM、AFM、SEM 來說明黏土在此奈米複合材料中所造成的特殊晶核形態。 本論文的第二個部分,一系列之 PPY / 蒙脫土的奈米複合材料是由咇咯和蒙脫土以in-situ polymerization的方法來進行氧化聚合。所合成之材料以 FTIR,UV-VIS,XRD及TEM 進行鑑定。實驗的結果顯示出蒙脫土在高分子基材中的分散已達奈米級,而經由黏度計的量測結果得知蒙脫土的導入使高分子的聚合度降低;經由測試 TGA 和DSC 來探討其熱性質,由電化學測試的結果得知蒙脫土的加入確實有效地提升防腐蝕的效果。 在本實驗中,另探討插層型黏土在聚咇咯/黏土奈米複合材料中所扮演的晶核角色,首先將所合成的PPY / 黏土奈米複合材料以 FTIR、TEM 作基本鑑定,以確定其達到奈米級的分散。所合成之材料使用廣角粉末 XRD、DSC 來觀察其高分子結晶性的變化,最後再以 POM、SEM 來說明黏土在此奈米複合材料中所造成的特殊晶核形態。

並列摘要


The major research purpose of this thesis contains two fractions. In the first fraction:a series of polymer-clay nanocomposite (PCN) materials that consisted of emeraldine base of poly(o-methoxyaniline) (PMA) and layered montmorillonite (MMT) clay were prepared by effectively dispersing the inorganic nanolayers of MMT clay in organic PMA matrix via in-situ oxidative polymerization. Organic o-methoxyaniline monomers were first intercalated into the interlayer regions of organophilic clay hosts and followed by an one-step oxidative polymerization. The as-synthesized PCN materials were subsequently characterized by Fourier-Transform infrared (FTIR) spectroscopy, wide-angle powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The molecular weights of PMA extracted from PCN materials and bulk PMA were determined by gel permeation chromatography (GPC) analysis with NMP as eluant. Effects of the material composition on the thermal stability, electrical conductivity, optical properties and corrosion protection performance of PMA along with a series of PCN materials, in the form of fine powder and coating, were also studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), four-point probe technique, UV-vis absorption spectra and electrochemical corrosion measurements, respectively. Morphology of as-synthesized materials observed by polarizing optical microscopy (POM) and scanning electron microscopy (SEM) studies. In the second fraction:A series of nanocomposite materials that consisted of polypyrrole and layered montmorillonite (MMT) clay were prepared by effectively dispersing the inorganic nanolayers of MMT clay in organic polypyrrole matrix via in-situ polymerization. Organic pyrrole monomers were first intercalated into the interlayer regions of organophilic clay hosts and followed by an one-step oxidative polymerization. The as-synthesized polypyrrole-clay lamellar nanocomposite materials were characterized by infrared spectroscopy, wide-angle powder X-ray diffraction, transmission electron microscopy. Polypyrrole-clay nanocomposites (PCN) in the form of coatings with low clay loading (e.g. 1.0 wt-%) on cold-rolled steel (CRS) were found much superior in corrosion protection over those of conventional polypyrrole based on a series of electrochemical measurements of corrosion potential, polarization resistance and corrosion current in 5 wt-% aqueous NaCl electrolyte. Effects of the material composition on the thermal stability, electrical and optical properties of polypyrrole along with PCN materials, in the form of both fine powder and powder-pressed pellets, were also studied by differential scanning calorimetry, thermogravimetric analysis, four-point probe technique and UV-vis absorption Spectra. The molecular weights of PPY extracted from PCN materials and bulk PPY were determined by viscosmeter analysis with m-cresol as eluant. The crystallization behavior of polymer matrix was also observed by wide-angle powder XRD. The morphological imaging studies of crystalline behavior of platelets in nanocomposites were investigated by scanning electron microscopy (SEM).

參考文獻


51. Jui-Ming Yeh, Chi-Lun Chen, Yen-Chen Chen, Chin-Yi Ma, Kueir-Rarn Lee, Polymer, 2002, 43, 2732.
42. G. Gustafsson, Y. Cao, G. M. Treacy, K. F. lavetter, N. Cplaneri, A. Heeger, J. Nature, 1992, 357, 477.
34. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasir, Mol. Liq. Cryst., 1985, 121, 173.
64. W. H. Jiang, S. J. Han, Eur. Polym. J., 1999, 35, 2080.
18. J. W. Gilman, C. L. Jackson, A. B. Morgan, R. Hayyis, E. Manias, E. P. Giannelis, M. Wuthenow, D. Hilton, S. H. Phillips, Chem. Mater. 2000, 12, 1866.

被引用紀錄


楊鈞森(2013)。聚吡咯-氫氧基磷灰石-膠原蛋白複合材料 3-D 導電支架之製備及其在骨組織工程之應用〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201301110
戴崇峰(2006)。環氧樹脂奈米複合材料及孔洞性材料之製備與性質探討〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200600415
郭泰宏(2006)。聚(鄰-(胺基苯甲基醚-十二烷基苯磺酸))-蒙脫土奈米複合材料及壓克力共聚物-銀粒子奈米複合材料之製備與性質研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200600351
張瑞光(2005)。合成聚苯胺-黏土奈米複合材料及鹼化在其介電特性之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200500156
李世銘(2004)。聚醯亞胺-黏土奈米複合材料之製備與其介電特性之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200400301

延伸閱讀