透過您的圖書館登入
IP:3.144.212.145
  • 學位論文

楔形流場中在磁場影響下氣膠傳輸機制之研究

A Study of Transport Mechanisms of Aerosol Particles under Magnetic Field on the Wedge Flows

指導教授 : 蔡瑞益
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文探討氣膠微粒在受到熱泳效應和磁場效應時,對於氣膠微粒在一楔形流場之微粒附著速度的影響。這兩種傳輸機制的交互作用,對微粒附著速度有相當重要性。氣流流場考慮不可壓縮、二維層流之楔形流場,其統御方程式包括動量、能量及濃度場方程式。數值方法用Box method與區塊消去法解其統御方程式,進而計算出氣膠微粒附著速度,微粒粒徑選擇為0.01~100。 同時考慮擴散效應、磁場效應和熱泳效應時,我們發現當微粒粒徑很小時(dp<0.1),微粒附著速度是受到布朗擴散和熱泳機制影響。微粒粒徑愈小、Eckert number愈大,則微粒附著速度愈大。而磁場效應向下時使微粒往板塊吸附,因此磁場愈大微粒附著速度愈大;而磁場效應向上時反而讓微粒附著通量減少,因此磁場愈大微粒附著速度愈小。

並列摘要


The study of aerosol particle deposition rate affected by thermophoresis and hydromagnetic flow effect onto a plane stagnation flow are reported. The interaction between these two transport mechanisms is expected to be very important for particle deposition rate. In this study, the air flow was modeled as incompressible two dimensional laminar wedge flow. The governing equations include conservation of mass, momentum, energy and concentration. Similarity analysis with the Box method and block elimination was used to determine these governing equations. We can obtain aerosol particle deposition velocity by solving these governing equations. Particle is selected in a range of 0.01~100. As Brownian diffusion effect, hydromagnetic flow effect and thermophoresis effect are considered, we can find that particle deposition rates are controlled by Brownian diffusion effect and thermophoresis effect for ultra-small particle sizes(dp<0.1). Particle sizes will become smaller when Eckert number become larger. And the particle deposition rates will increase. When hydromagnetic flow effect direction is downward, the particle will be sucked onto the plate, so particle deposition rates will increase with the hydromagnetic flow magnitude. Oppositely, when the hydromagnetic flow effect direction is upward, the particle deposition flux will decease, so if the hydromagnetic flow become intensitive, particle deposition rate will turn into weaker.

參考文獻


28.李建興,具磁場影響下水平波形板上層流對流薄膜結熱研究, 碩士論文, 成功大學,2002。
3.P. Chandran, N. C. Sacheti and A. K. Singh, Int. Commun. Heat Mass Transfer, Vol. 23, pp. 889-898, 1996.
26.R. Tsai, Y. P. Chang and T. Y. Lin, J. of Aerosol Sci., Vol. 7, pp. 811-825, 1998.
1.A. Chakrabarti and A. S. Gupta, Q. Appl. Math., Vol. 37, pp. 73-78, 1979.
2.T. C. Chiam, Int. J. Engin. Sci., Vol. 33, pp. 429-435, 1995.

被引用紀錄


陳逸(2011)。導電性流體層流噴射流之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201100948
蘇彥彰(2011)。導電性流體在收縮平板之熱流場分析〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201100782
黃文翰(2010)。導電性流體流經收縮平板之邊界層流場分析〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201000726

延伸閱讀