透過您的圖書館登入
IP:3.135.246.193
  • 學位論文

柱型散熱鰭片幾何尺寸影響熱傳性能之研究

Effect of Dimensions of Cooling Pin-Fins on Heat Transfer Performance

指導教授 : 蔡瑞益
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


中文摘要 本文主要研究空氣噴射衝擊散熱鰭片冷卻熱點之熱傳狀況。散熱鰭片的幾何尺寸與雷諾數,是影響冷卻效果的主要研究參數。其中散熱鰭片為9×9陣列式柱型鰭片,散熱鰭片底部尺寸為70mm×70mm×3mm,鰭片寬度分別為4mm、5mm、6mm,高度分別為30mm、40mm、50mm,雷諾數範圍5000~30000,熱點尺寸為30mm×30mm,其熱功率30W,使用計算流體力學套裝軟體PHOENICS,模擬採用紊流模式,計算探討溫度場與鰭片流道中壓力分佈。 本文經模擬分析,得出在下列三種條件參數下有較好的散熱效果:(1)雷諾數為30000時。(2)鰭片寬度為6mm時。(3) 鰭片高度為50mm時。

並列摘要


ABSTRACT The main purpose of this study is to research the heat transfer of hot spot for air impingement flow on a heat sink. The dimension of heat sink and Reynolds number are the main parameters affecting the cooling efficiency. In this study, the heat sink is square pin-fin and a 9×9 pin-fin array. The dimension of heat sink base is 70mm×70mm×3mm, and a fin width is 4, 5, and 6 mm, height is 30, 40, and 50 mm. The range of Reynolds number is 5000~30000, and the dimension of hot spot is 30mm×30mm, and the power is 30W. The PHOENICS software CFD package is used for calculating the temperature field and the pressure of heat sink channel. After the model had simulation and analysis, we can find three better characteristic conditions for cooling efficiency: (1) Reynolds number is 30000. (2) heat sink width is 6mm. (3) heat sink height is 50mm.

參考文獻


【1】J. G. Maveety and J. F. Hendricks, “A heat sink performance study considering material, geometry, nozzle placement, and reynolds number with air impingement”, ASME J. Electronic Packaging, Vol.121, pp. 156-161 (1999).
【3】G. Ledezma, A. M. Morega and A. Bejan, “Optimal spacing between pin fins with impinging flow”, ASME J. Heat Transfer, Vol.118, pp. 570-577(1996).
【4】J. G. Maveety and H. H. Jung, “Design of an optimal pin-fin heat sink with air impingement cooling”, Int. Comm. Heat Mass Transfer, Vol.27, No.2, pp.229-240(2000).
【5】V. A. Chiriac and A. Ortega, ”A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface”, Int. J. Heat Mass Transfer 45, 1237-1248(2002).
【6】R. S. Amano, “Electronic cooling technology with use of turbulent impinging jets”, IEEE 0-7803-5912-7 Inter Society Conference on Thermal Phenomena, 339-346(2000).

被引用紀錄


林世鵬(2011)。車輛電動馬達導熱鰭片之設計與分析〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2011.00202
徐子圭、林世鵬、苗志銘、戴昌賢(2012)。具多孔介質裝置之電動馬達熱流場數值研究航空太空及民航學刊.系列B44(2),109-117。https://doi.org/10.6124/12-0924-706
陳建祥(2012)。衝擊噴流冷卻於圓柱型散熱鰭片之熱流場模擬分析〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-3007201216011700
林辰昀(2013)。應用田口法於多噴嘴衝擊噴流冷卻之熱流場分析〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-3107201313274100

延伸閱讀