透過您的圖書館登入
IP:18.118.184.237
  • 學位論文

室溫硬化型電活性環氧樹脂之仿生疏水防蝕塗料與可逆摻雜及改質石墨烯聚胺基甲酸酯發泡體之製備及其性質探討

Preparation and Properties of Room-Temperature Curable Electroactive Epoxy Biological Hydrophobic Coating and Reversible Dopable Trimer and Edge-functionalized Graphene Polyurethane Foams

指導教授 : 葉瑞銘
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文之研究內容主要分為三個部分,其一是利用 “模板轉印法”來仿製天然植物千年芋葉片表面之微結構,製備時需先將胺基封端苯胺三聚體(ACAT)、環氧樹脂(Epon 828)和硬化劑(B210)利用“三滾筒分散機” (three-roller)將其充分均勻混合,並於室溫下進行硬化反應三天,並於無溶劑的條件下進行轉印製程,即可得到含有胺基封端苯胺三聚體之電活性環氧樹脂複合仿生疏水塗料。 需要特別注意的情況是: 在電活性環氧樹脂中增加苯胺三聚體塗層量可有效加速環氧樹脂的固化,同時亦促進了塗層材料之熱穩定性和防腐蝕性能。 隨後,利用聚二甲基矽氧烷(PDMS)對千年芋葉片進行葉片表面之模板複製,由水滴接觸角之研究結果證明: 有微結構的電活性環氧樹脂提升近60°屬於疏水特性。 接著,進行該仿生塗料之電化學防腐蝕測試,由研究結果顯示: 其耐腐蝕速率比冷軋鋼高約450倍,且比不具仿生結構之相同塗層優異許多。 顯著改善腐蝕保護的原因可能如下: (1)電活性環氧樹脂所產生的鈍性氧化層; (2) 模板複製之後的微結構所造成疏水性 兩者的協同效應。 此外,本研究的第二個部分,利用預聚法使具有電活性的胺基封端苯胺三聚體導入聚胺基甲酸酯(Polyurethane,PU)中進行化學發泡,形成具有可逆變的PU發泡體,進一步利用減弱全反射傅利葉轉換紅外線光譜儀(ATR-FT-IR)觀察NCO是否反應完全。 進一步使用熱重分析儀(TGA)和示差掃描熱卡計(DSC)測量PU發泡體的熱性質。 由研究結果可以得知: 隨著胺基封端苯胺三聚體之含量增加,對應之PU發泡體之熱性質也相對提升。 在機械性質研究方面,利用拉力試驗機和動態機械分析儀(DMA)來測試材料的機械特性,由實驗結果顯示: 加了0.08 wt%胺基封端苯胺三聚體可使機械性質提升大約是原本材料的三倍。 最後,利用酸鹼的摻雜觀察具苯胺三聚體之PU發泡體“巨觀”的顏色變化,結果顯示: 材料具有良好的摻雜/去摻雜性可逆性,並以SEM觀察PU發泡體的“微觀”表面型態,得知鹽酸分子摻雜前後不會改變PU泡體之內部微結構。 最後一個研究主題是使用Friedel-Crafts acylation reaction的方式改質石墨烯,使石墨烯表面帶有胺基,將其加入到聚胺基甲酸酯中進行發泡實驗,形成PU/石墨烯複合之發泡體。 首先,利用IR、SEM、元素分析(EA)、XPS、TGA、雷射拉曼光譜儀(Raman)、廣角X-ray 繞射分析(XRD) 得知石墨烯改質是成功的,經由SEM的研究發現: 隨著改質過後的石墨烯添加量之增加,複合發泡體之孔洞逐漸變小,交聯密度也越來越大。 接著,利用拉力測試和DMA測試複合發泡體之拉伸及壓縮機械性,結果顯示加了改質過後的石墨烯,可以使複合發泡體之機械強度增加近4倍,由此可知: 改質過後的石墨烯可以有效提升PU/石墨烯複合發泡體之機械性質。

並列摘要


In this dissertation, three major topics have been thoroughly discussed. First topic is focused on the preparation of biomimetic room-temperature cured epoxy resin coating and study their potential application in corrosion protection. It should be noted that the coating with biomimetic structures was found to reveal effective corrosion protection performance as compared to that of coating without biomimetic structures based on a series of electrochemical Secondly, amine-capped aniline trimer (ACAT) was incorporated into the commercially polyurethane (PU) foam through chemical foaming process, leading the formation of reversibly dopable/de-dopable electroactive PU (EPU) foam. It should be noted that the incorporation of ACAT may effectively enhance the mechanical strength of neat PU foam based on the tests in tensile and compression mode. Moreover, the reversibly HCl-dopable properties were also found in as-prepared EPU foam. Upon HCl doping, the color of EPU was found to change from blue to green, which was similar to that of polyaniline. The third topic focused on the PU foam containing graphene sheets. First of all, graphite was modified through Friedel-Crafts acylation reaction to give graphene surface with amine functional groups, followed by introducing to the forming process of polyurethane foam reaction, to give formation of PU/graphene composite foam. Upon addition of graphene sheets, with the increase of graphene content, SEM can decrease the pore diameter of composite foams. it indicated that the crosslinking density of composite foams is increasing. Finally, upon addition of graphene sheets into composite foams, the mechanical strength in tensile- and compression- mode of composite foams indicated that the addition of graphene may effectively enhance the mechanical strength ~ 4 times.

並列關鍵字

foams mechanical strength. Graphene hydrophobic anticorrosion electroactive ACAT epoxy

參考文獻


[63] 黃冠燁, 電活性聚亞醯胺薄膜、塗料及電噴灑粒子的製備與性質探討,中原大學化學研究所博士論文 2009.
[35] O,Nell.L.A.and C.P. Cole, ,J.appl.Chem.lond. 1956,6,356.
[66] H. Y. Kwong, M. H. Wong, Y. W. Wong, and K. H. Wong, Applied Surface Science 2007,253 8841.
[15] A. G. MacDiamid, L. S. Yang, W. S. Huang, B. D. Humphrey, Synth. Met., 1987, 18, 393.
[55] J. M. Yeh, C. L. Chen, Y. C. Chen, C. Y. Ma, H. Y. Huang, Y. H. Yu, J. Appl.Polym. Sci. 2004, 92, 631.

被引用紀錄


鄭喬譽(2013)。光固化型仿生超疏水壓克力/石墨烯奈米複合材料之製備及其性質探討〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300957

延伸閱讀