透過您的圖書館登入
IP:3.16.81.94
  • 學位論文

鈣鈦礦結構太陽能電池之研製

The study of Perovskite Structure Solar Cells

指導教授 : 王宏文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是以鈣鈦礦結構材料 - CH3NH3PbI3作為光吸收材料,以往在染敏太陽能電池中,常以有機染料作為光敏材料,但有鑑於有機染料的高價格以及合成上較為不易,因此實驗取代傳統之有機染料之光敏劑,作為太陽能電池應用且發展成為新一代鈣鈦礦太陽能電池。 於研究第一部份中介紹如何製備鈣鈦礦結構材料,並且以XRD、TGA等儀器去做材料的性質測定,確認只要以簡單的方式且不需經由高溫等耗能設備即可合成出可應用於太陽能電池上之鈣鈦礦結構材料。 於研究第二部份則是鈣鈦礦結構材料應用於太陽能電池中表現出的光電特性結果,在這邊我們以溶液沉積法和連續沉積法兩種不同方式使鈣鈦礦結構材料沉積於我們的太陽能電池TiO2薄膜中,並且得到不同之效率結果,於實驗得到之效率結果為4.93%,與傳統染料敏化太陽能電池之效率(=5.86%)相比,已可達到80%以上之光電轉換效率。 於研究第三部分中,雖然本實驗室以鈣鈦礦結構材料作為光吸收材料在光電轉換效率上已可接近傳統使用有機染料之太陽能電池效率,但因鈣鈦礦結構材料易受水氣、電解液中有機溶劑等影響而分解,導致其在光電表現上衰退迅速,因此此部分我們試著以全固態方式製備取代傳統之太陽能電池需要電解液之缺點,並將以往之電解質以電洞傳導材料(HTMs)取代,使鈣鈦礦太陽能電池在光電轉換效率上能更佳的優化。

並列摘要


This study is based on perovskite material - CH3NH3PbI3 as a light absorbing material. In a traditional dye-sensitized solar cell, the organic dye is often used as a photosensitizer. In the view of the organic dyes are high priced and difficult to be synthesized, the present experiments synthesized inorganic light absorber to instead of the traditional organic dye photosensitizers. In the first part of the study, we introduce how to prepare perovskite structure material, and confirm using X-ray diffraction spectroscopy and Thermogravimetric analysis. It did not require high temperature and energy-consuming equipment to synthesize the perovskite materials for the use in solar cells. In the second part of the study, we have employed the perovskite materials in the solar cells and measured its photovoltaic properties. We used solution deposition method and sequential deposition method to deposit the perovskite structure material on the TiO2 film to prepare the solar cell with the structure of traditional DSSC and liquid electrolyte. The results of this experiment achieved =4.93%, more than 80% of the photoelectric conversion efficiency of the traditional dye-sensitized solar cell efficiency (=5.86%). In the third part of the study, since the perovskite materials are susceptible to the moisture and decompose easily in the electrolyte solvent, leading to a rapid decline of the performance. Preparation of all-solid solar cells was done to replace the traditional dye-sensitized solar cell to avoid the disadvantages of electrolyte. Hole-conducting materials (HTMs) such as spiro-MeOTAD in perovskite solar cells are demonstrated to optimize the efficiency.

並列關鍵字

Solar Cells Perovskite Structure

參考文獻


45.P. Qin, A. L. Domanski, A. K. Chandiran, R. Berger, H. J. Butt, M. I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M. K. Nazeeruddin and M. Grätzel, “Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells.” Nanoscale, 2014, 6, 1508-1514.
2.B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.” Nature, 1991, 353, 737-740.
3.M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells.” Inorg. Chem., 2005, 44, 6841-6851.
4.Z. S. Wang, M. Yanagida, K. Sayama and H. Sugihara, “Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells:  Improvement of Electron Lifetime and Efficiency.” Chem. Mater., 2006, 18, 2912-2916.
5.A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency.” Science, 2011, 334, 629-634.

延伸閱讀