透過您的圖書館登入
IP:3.147.8.255
  • 學位論文

里德所羅門碼之非二進制解碼演算法之研究

A Study of Nonbinary Decoding Algorithms for RS Codes

指導教授 : 鄭立德

摘要


里德所羅門碼(Reed-Solomon Code)是一種非二進制(non-binary)的錯誤更正碼,它具有良好的錯誤更正能力,為現今被廣泛使用的錯誤控制碼(Error correction Codes),里德所羅門碼經常被應用在數位通訊與數位儲存媒體中。   在解碼方面,由於低複雜度的需求,傳統解碼大多使用硬式決策解碼器。而目前已知里德所羅門碼軟式決策解碼相較於傳統的硬式決策解碼器有較好的性能改善,但其缺點卻是軟式決策解碼的高複雜度。本篇論文中使用排序統計解碼演算法(Order Statistic Decoding,OSD)來降低軟式決策複雜度的問題,並提出了對非二進制排序統計解碼演算法降低複雜度的方法。   本篇論文中利用解調偵測器的軟式輸出值來計算符元(Symbol)的可靠度,其計算複雜度將大幅的降低,同時也提升了解碼效能。本文分別在加成性高斯雜訊通道(additive Gaussian noise channel,AWGN)以及部分頻帶雜訊干擾(partial band noise jamming,PBNJ)環境下進行模擬分析。此外為了更加降低系統運算複雜度,本文也提出了幾種方法。最後本文會分析演算法的各種方法在不同情況下之效能比較。

並列摘要


Soft-decision decoding of Reed-Solomon (RS) code can improve the decoding performance significantly, but the system complexity is high. Therefore, most of the communication systems use the hard-decision decoder because of low complexity. However order statistic decoding algorithm (OSD) is an effective decoding algorithm which can reduce the complexity of the system. In this thesis, we used a non-binary OSD algorithm which can be applied to non-binary RS code. We also consider different ways of computing symbol reliability and decoding metric in the proposed algorithm. Besides, we proposed several ways to reduce the system complexity. Simulation results show the performance of the algorithm under partial band noise jamming (PBNJ) and AWGN.

參考文獻


[3] Marc P. C. Fossorier and Shu Lin “Soft-decision decoding of linear block codes based on ordered statistics” IEEE Transactions on information Theory, VOL. 41, NO. 5, SEPTEMBER 1995
[4] Y. M. Hsieh, “A Study on Belief-Propagation Based Decoding Algorithms for Reed-Solomon Codes”, Master Thesis, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2007.
[7] M. B. Pursley and W. E. Stark, “Performance of Reed-Solomon coded frequency-hop spread-spectrum communications in partial-band interference.” IEEE Trans. Commun., vol. COM-33, pp. 767-774, Aug. 1985.
[8] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction To Spread Spectrum Communications, Englewood Cliffs, N.J.: Prentice Hall, 1995.
[11] Jing Jiang, Krishna R. Narayanan “Iterative Soft Decoding of Reed–Solomon Codes” Communications Letters, IEEE . vol. 8, pp. 244-246, Dec. 2004

延伸閱讀