透過您的圖書館登入
IP:18.118.137.243
  • 學位論文

回收大型鋰離子動力電池應用於水資源中心可行性評估

Feasibility Study of Reusing Large-scale Automotive Lithium-ion Battery Applied in Wastewater Treatment Plant

指導教授 : 施武陽 江益賢
本文將於2024/12/31開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文目標為應用回收之鋰離子動力電池組,進行儲能系統再整合應用於大型耗能設施,以增進設施能源利用效率與開發廢棄物回收再利用之技術,如應用於水資源回收中心離尖峰耗能調控等用途。為了達到可行性評估之目的,首先使用48V鋰離子回收動力電池組建立電池開發測試平台,蒐集鋰離子電池在不同運作充放電條件下的資料,並將電池測試數據導入電池管理系統中進行線上與離線運算,計算出電池運作狀態下不同的狀態參數,如開路電壓、內電阻等。我們也對自行開發的電池管理系統上的PWM電池延壽功能進行測試,利用調整不同的工作週期,量測回收電池與超級電容的輸出狀態,並確認回收電池在不同的PWM工作週期下放電深度變化,也就是相對於循環壽命延長效果。 回收鋰離子動力電池做為儲能裝置,調控整體鋰離子電池儲能裝置的輸出電流大小與放電深度是一重要的課題。透過自行開發的電池管理系統模組,具體來說,對電池狀態的進行即時監控與PWM電力調控並利用不同的充放電波形來驗證電池管理系統對電池的監控準確性與PWM電力調控的效果,透過以上的方式將電池組使用狀況與超級電容進行PWM調控,輔助電池在大電流輸出所需的電力,以降低電池組的放電深度,另外,本研究也透過設計新混合儲能裝置之架構,應用於回收鋰離子電池儲能裝置上,設計為一新回收電池管理架構。此種回收電池管理架構相較於傳統PWM架構的控制將更為有效與智慧化,對應不同的電力使用條件,如穩定輸出、瞬間大量輸出、電力回充等情況,啟動切換器以驅動六種不同工作模式,變更電池與超級電容的串並聯狀態,將不同的電力輸出情況下降低電池組放電深度、提供即時大電流充放電高效率應用,本研究利用PSIM電子電路模擬軟體進行分析,模擬在不同情境下回收電池管理架構中電池與超級電容的輸出變化,觀察電池放電深度之變化,期以做為未來實際應用與相關研究之基石。

並列摘要


The purpose of this research is to apply reused lithium-ion battery pack to reconfigure the energy storage system for large-scale energy-consuming facilities, such as wastewater treatment plant. In detailed, firstly, a 48V lithium-ion battery pack was used to establish a battery test platform, collect data of lithium-ion batteries under different operating charge and discharge conditions, and integrate battery test data into the battery management system for online and offline operations. This work aims at estimating different state parameters such as open circuit voltage and internal resistance under battery operating conditions. We also test the PWM function in the in-house battery management system, adjust duty cycle, measure the output states of the battery and the ultracapacitor, and observe the voltage drop of the battery under different PWM duty cycles. Reusing lithium-ion power batteries used as energy storage devices to regulate the output current and discharge depth of the lithium-ion battery energy storage device is an important issue. In this phase, through the in-house battery management system module, the basic life cycle and capacity sensitized parameters are monitored and ultracapacitor is used to elongate the life cycle of battery. The basic results are used to verify the battery management system's accuracy and PWM control effect. However, reusing lithium-ion battery connected with ultracapacitor is not enough to only rely on PWM regulation. Therefore, the design and simulation of a brand new hybrid energy storage system is conducted to activate switches or converters to match different scenarios and change the serial-parallel connections between the battery and the ultracapacitor according to different usages. These can be used as the basis for future practical applications and related research.

參考文獻


Broussely, M., Biensan, P., Bonhomme, F., Blanchard, P., Herreyre, S., Nechev, K., & Staniewicz, R. (2005). Main aging mechanisms in Li ion batteries. Journal of Power Sources, 146(1-2), 90-96.
Cain, S. R., Anderson, A., Tasillo, E., Infantolino, W., & Wolfgramm, P. (2014). Empirical evaluation of the improvement of battery output when coupled with a capacitor bank. Journal of Power Sources, 268, 640-644.
Capasso, C., & Veneri, O. (2017). Integration between super-capacitors and ZEBRA batteries as high performance hybrid storage system for electric vehicles. Energy Procedia, 105, 2539-2544.
Casals, L. C., García, B. A., & Canal, C. (2019). Second life batteries lifespan: Rest of useful life and environmental analysis. Journal of environmental management, 232, 354-363.
Chen, L., Lü, Z., Lin, W., Li, J., & Pan, H. (2018). A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity. Measurement, 116, 586-595.

延伸閱讀