透過您的圖書館登入
IP:13.59.36.203
  • 學位論文

由完全的二部圖Kt,n所生成之非常好覆蓋圖形的獨立多項式之對數凹性

Log-concavity of independence polynomials of the very well-covered graphs generated from the complete bipartite graphs Kt,n

指導教授 : 高欣欣

摘要


一個好覆蓋(well-covered)的圖形是指它所有的最大的獨立集(maximal stable/independent sets)都擁有相同的點數。給定一圖G裡面,令點數為k的獨立集的可能性為sk,且它極大的獨立集(maximum stable sets)的點數稱之為α(G)。如果一個好覆蓋的圖形沒有孤立點並且點數為2α(G),這種圖形稱做非常好覆蓋的(very well-covered)。圖形的獨立多項式(independence polynomial)被定義為 I(G; x) = Σα(G)k=0 skxk;若對所有的1 ≤ k ≤ α(G)−1, I(G; x)滿足s2k ≥ sk+1sk¡1,這樣I(G; x)就稱為有對數凹性的(log-concave)。給定一個任意圖G,在這圖G每個點都長出一條邊和點,這種圖形就稱作是G¤。很明顯的G¤是個非常好覆蓋的圖形。 在2004年,Levit 和 Mandrescu[17]證明了K¤1,n的獨立多項式有對數凹性。 在2010年,Chen和Wang[8]證明出K¤2,n的獨立多項式也有相同的結果。 本篇論文中,我們把K¤t,n, t ≤ n的獨立多項式寫出來,並且證明當t=3, 4, 5的時候,它們的獨立多項式都擁有對數凹性的性質。

並列摘要


A well-covered graph is a graph in which all maximal stable/independent sets have the same cardinality. Let sk denote the number of stable sets of cardinality k in graph G, and α(G) be the size of a maximum stable set. A well-covered graph G with no isolated vertices is called very well-covered if |G| = 2α(G). The independence polynomial of G is defined by I(G; x) = Σα(G) k=0 skxk, and I(G; x) is log-concave if s2k ≥ sk+1sk¡1 holds for 1 ≤ k ≤ α(G)−1. Given an arbitrary graph G, G¤ is the graph obtained from G by appending a single pendant edge to each vertex of G. It is easy to see that G¤ is very well-covered. In 2004, Levit and Mandrescu [17] proved that the independence polynomial of K¤1,n is log-concave. In 2010, the same result for K¤2,n is proved by Chen and Wang [8]. In this thesis, we find the independence polynomials I(K¤t,n; x) of K¤t,n for all positive integers t ≤ n and show that I(K¤t,n; x) is log-concave for any t with 3 ≤ t ≤ 5.

參考文獻


[6] J.I. Brown, R.J. Nowakowski, and I.E. Zverovich, The structure ofwell-covered graphs
York, 1980.
[3] J.I. Brown, K. Dilcher, and R.J. Nowakowski, Roots of independence polynomials of
well-covered graphs, J. Algebr. Comb. 11 (2000), 197–210.
[4] J.I. Brown and R. Hoshino, Well-covered circulant graphs, Discrete Math. 311 (2011),

延伸閱讀