透過您的圖書館登入
IP:3.137.218.230
  • 學位論文

電致可逆交聯高分子之合成、性質 與應用研究

Synthesis, properties and application of electrically-induced reversibly crosslinked polymers

指導教授 : 劉英麟

摘要


本論文利用具有電化學性質之二茂鐵甲酸(Fc-COOH)與β-環糊精(β-CD)形成主客錯合物,且可使用通電的方式將主客錯合物脫附分離,因而利用此方式發展出一種電致可逆交聯高分子。使用聚甲基丙烯酸縮水甘油酯(Polyglycidyl methacrylate)(PGMA)之環氧基團與二茂鐵甲酸(Ferrocene carboxylic acid)(Fc-COOH)接枝,合成出含有二茂鐵側基的高分子(PGMA-Fc)為客體分子(guest);而主體分子(host)為帶有兩個β-CD分子的化合物(β-CD-HDI-β-CD)。將主客兩種分子交聯後形成錯合物,塗佈至銅箔以及矽晶片上利用通電的方式,使主客錯合物脫附,形成可逆交聯系統,並將之應用於自修復材料的研究。 再者,以氫氣電漿改質具有孔隙之聚四氟乙烯薄膜Poly(tetrafluoroethylene)(PTFE)後,進行原子轉移自由基聚合法(ATRP),使高分子客體接枝聚合在薄膜表面上,形成e-PTFE-g-PGMA-Fc,之後再將含有客體分子之薄膜浸泡至主體分子溶液中,形成薄膜表面接枝主客交聯錯合物的(PTFE-g-PGMA-Fc/β-CD-HDI-β-CD)。同時利用通電的方式將主客兩者解交聯,觀察其薄膜表面形態以及結構分析,並應用於蛋白質脫附的研究。

並列摘要


This work reports the synthesis of host-guest inclusion-complex using Ferrocene carboxylic acid (Fc-COOH) and -cyclodextrin (beta-CD). The guest polymer, poly(glycidyl methacrylate)-ferrocene (PGMA-Fc), was synthesized from reaction of epoxy group of PGMA and Fc-COOH, and the host molecule beta-CD-HDI-beta-CD contains two beta-CD groups. After the crosslinking reaction between the host and guest, the polymer is coated on copper foil or silica wafer. The electrochemical property of Fc-COOH allows desorption of the inclusion body by electrification, forming a reversible crosslink system, which can be applied in self-healing materials. The guest polymer grafted poly(tetrafluoroethylene) (PTFE), is also synthesized. After hydrogen plasma treatment on e-PTFE membrane, PGMA was grafted onto membrane through surface-initiated atom transfer radical polymerization (ATRP). Fc-COOH is then grafted through the ring-opening reaction of the e-PTFE-g-PGMA, forming a guest membrane, e-PTFE-g-PGMA-Fc. The membrane is then soaked into host aqueous solution to obtain the host-guest membrane, e-PTFE-g-PGMA-Fc/beta-CD-HDI-beta-CD. The structure and morphology of membrane surface after electrification induced desorption of inclusion body are investigated. This membrane is also applied in the study of protein desorption.

參考文獻


2. Hennink, W. E.; manakker, F. v. d.; Vermonden, T.; Nostrum, C. F. v., Cyclodextrin- Based Polymeric Materials: Synthesis, Properties,and Pharmaceutical/Biomedical Applications. Biomacromolecules 2009, 10, 3157-3175.
3. Matyjaszewski, K.; Xia, J., Atom Transfer Radical Polymerization. Chemical Reviews 2001, 101, 2921-2990.
4. Kuo, S. W.; Chang, F. C.; Tu, C. W., Supramolecular self-assembly through inclusion complex formation between poly(ethylene oxide-b-N-isopropylacrylamide) block copolymer and a-cyclodextrin. Polymer 2009, 50, 2958-2966.
5. Lincoln, S. F.; Li, L.; Guo, X.; Wang, J.; Liu, P.; Prud’homme, R. K.; May, B. L., Polymer Networks Assembled by Host-Guest Inclusion between Adamantyl and b -Cyclodextrin Substituents on Poly(acrylic acid) in Aqueous Solution. Macromolecules 2008, 41, 8677-8681.
6. Hennink, W. E.; Manakker, F. v. d.; Pot, M. v. d.; Vermonden, T.; Nostrum, C. F. v., Self-Assembling Hydrogels Based on â-Cyclodextrin/Cholesterol Inclusion Complexes. Macromolecules 2008, 41, 1766-1773.

被引用紀錄


徐勤恆(2006)。獵風行動-綠色烏托邦〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2006.00404

延伸閱讀