透過您的圖書館登入
IP:3.133.147.252
  • 學位論文

壓電傳送平台之最佳化設計

Optimum Design of a Piezo-Feeder Based on Dynamic Analysis

指導教授 : 趙昌博
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要為分析工業用之物件傳送平台,建立其動態理論模型並利用田口法(Taguchi Method)作平台之設計參數分析,再以基因演算法(Genetic Algorithm)找出平台之參數最佳化設計。此機構是以平行壓電致動器作為主要的驅動來源,經由兩平行樑同步的振動,使平台產生週期性之擺動,導致平台上之物件受到帶動向前達到傳輸的效果。在模型建立方面,依據此機構各部分的材料和壓電特性,利用Rayleigh-Ritz方法,將原系統簡化為橫向振動懸臂樑結構,並假設三個低階的Assumed modes即可描述出壓電平行樑之複雜動態,建立出平台的動態方程式,再藉由物件與平台間的撞擊關係,可得兩者之間的相互運動,物件的傳輸速度即可求得。在參數分析方面,選定懸臂之傾斜角度、壓電驅動電壓、頻率、物件質量和碰撞係數等5種設計參數,由田口法分析各參數對其傳輸速率的影響。最後再利用基因演算法設計其最佳之懸臂傾斜角度,以實現最快的傳輸效率。本論文利用數值模型所推估之平台動態與物件傳送速度,可與實際實驗值達到一致。

並列摘要


The study is intended to establish an analytic model of the industrial-used part feeder, furthermore analyzing, optimizing the design parameters of that one via Taguchi Method and Genetic Algorithm based on dynamic analysis. A part feeder contains mainly a horizontal platform powered by parallel-beam piezoelectric actuators. The parts to be transported on the platform march forward due to their intermittent collision with the platform. The modeling technique used is essentially the Rayleigh-Ritz method, which first incorporates material properties and constitutive equations of the piezoelectric materials. Then it captures the complex dynamics of the parallel-beam piezo-feeder by three lower-order assumed modes in the transverse direction of the vibrating beam. Based on preceding equations, the dynamic functions of part feeder can be obtained. With impact dynamics, that prescribes the collision between the parts and the platform, investigated next, the marching speed of the parts can be predicted. Parametric analysis via Taguchi method would analyze the effects of 5 design parameters of a part feeder on transport speed of parts, and those design parameters include tilt angle of the piezo-beam, magnitude and frequency of input voltage, mass of part and coefficient of restitution. Genetic Algorithm (GA) is further utilized to find the tilt angle of the piezo-beam leading to the best transport speed. Numerical and experimental studies are conducted to acquire the estimated marching speed of the parts and verify theoretical findings.

參考文獻


[1] Choi, S. B., Cho, S. S. and Park, Y. P., “Vibration and position tracking control of piezoceramic-based smart structures via QFT,” ASME J. of Dynamic Systems, Measurement, and Control, 1999, 121, pp. 27-32.
[2] Choi, S. B., Kim, H. K., Lim, S. C. and Park, Y. P, “Position tracking control of an optical pick-up device using piezoceramic actuator,” Mechatronics, 2001, 11, pp. 691-705.
[3] Choi, S. B. and Shin, H. C., “A hybrid actuator scheme for robust position control of a flexible single-link manipulator,” J. of Robotic Systems, 1996, 13(6), pp. 359-370.
[4] Choi, S. B., Cheong, C. C., Thompson, B. S. and Gandhi, M. V., “Vibration control of flexible linkage mechanisms using piezoelectric films,” Mech. Mach. Theory, 1994, 29(4), pp. 535-546.
[5] Gosavi, S. V. and Kelkar, G., “Modeling, identification, and passivity-based robust control of piezo-actuated flexible beam,” ASME J. of Vibration and Acoustics, 2004, 126(2), pp. 260-271.

延伸閱讀