透過您的圖書館登入
IP:18.191.147.190
  • 學位論文

以巢狀概念模式探究高中生之科學學習–科學認識觀、後設認知知覺、科學學習概念及其科學評量概念

Nested ecology: High school students’ scientific epistemological beliefs, metacognitive awareness, conceptions of learning science and their conceptions of science assessment

指導教授 : 蔡今中 張俊彥
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


The purpose of this study was to deeply investigate students’ nested ecology regarding science learning from multidimensional perspectives (i.e., the interrelations among scientific epistemological beliefs, metacognition, conceptions of learning science, and conceptions of science assessment). To this end, this study performed the quantitative method to initially explore the interrelations among scientific epistemological beliefs, metacognitive awareness, and conceptions of learning science. Then, the qualitative method was conducted to deeply investigate the interplays among scientific epistemological beliefs, conceptions of learning science, and conceptions of science assessment and to clarify the nested ecology model. In addition, the role of metacognitive awareness on scientific epistemological beliefs and conceptions of learning science and science assessment were discussed through both quantitative and qualitative results. The quantitative part of the study was conducted with a sampling pool of 240 tenth graders. And, those students’ responses from three questionnaires were used to yield some quantitative indicators (i.e., scientific epistemological beliefs, metacognitive awareness, and conceptions of learning science) and to clarify the interplay between those variables. In general, the quantitative results revealed that students having more sophisticated scientific epistemological beliefs tended to show higher metacognitive awareness while learning science and to express more constructivist-oriented conceptions of learning science. In particular, as long as the students have more sophisticated beliefs about the justification of knowledge; they may tend to express much higher metacognitive awareness and to embrace the constructivist conceptions of learning science. For qualitative part of study, 60 representative students selected from the sampling pool were deeply interviewed about their scientific epistemological beliefs (including beliefs about the nature of knowledge and beliefs about the nature of knowing), conceptions of learning science, and conceptions of science assessment. This study found that most selected students expressed the empiricist beliefs about the nature of knowledge. Through the phenomenographic analyze of selected students’ interview responses, seven categories of conceptions of learning science (i.e., memorizing, preparing for tests, practicing the experiments, the increase of knowledge, applying, understanding, and seeing in a new way) and six categories of conceptions of science assessment (i.e., reproducing knowledge, rehearsing, revealing the learning status, improving learning, applying, and the justification of knowledge) were identified in this study. Moreover, the qualitative results seemed to reveal that, on the one hand, the selected students’ beliefs about the nature of knowing seemed to have greater power to explain students’ conceptions of learning science than their beliefs about the nature of knowledge. On the other hand, their beliefs about the nature of knowledge seemed to more relate to their conceptions of science assessment. This study also implied that students expressing more mature conceptions of learning science tended to hold more cohesive conceptions of science assessment. Furthermore, the qualitative part of this study identified three major forms of students’ nested ecology regarding learning science, that is the complete, partial, and divergent nested ecology. In particular, nearly half of 60 representative students were categorized as the complete nested ecology.

參考文獻


Lee, M.-H., & Chang, C.-Y. (2004). Development and exploration of the earth science classroom learning environment instrument (in Chinese). Chinese Journal of Science Education, 12, 421-443.
Marton, F. (1986). Phenomenography - a research approach to investigating different understandings of reality. Journal of Thought, 3, 28-49.
Elder, A. D. (2002). Characterizing fifth grade students’ epistemological beliefs in science. In B. K. Hofer & P. R. Pintrich (Eds.). Personal Epistemology: the psychology of beliefs about knowledge and knowing. (pp. 347-364). Mahwah, NJ: Lawrence Erlbaum.
Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82, 417–437.
American Association for the Advancement of Science. (1990). Science for all Americans. New York: Oxford University Press.

延伸閱讀