透過您的圖書館登入
IP:18.221.208.183
  • 學位論文

雙光子吸收/發光材料,磷光發光材料及自組裝超分子發光材料的合成及性質探討

指導教授 : 葉名倉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


無資料

關鍵字

發光材料

並列摘要


Abstract Part A. Two-Photon Absorption Chromophores Series of dipolar and quadrupolar type two-photon absorption (TPA) compounds have been synthesized and TPA cross sections (σ) were measured by Ti:sapphire femtosecond laser excitation fluorescence (λ = 800 nm). Among them, the compound [2,5-bis-[5-(4-diphenylaminophenylethynyl)thiophen-2-yl]-[1,3,4]oxadiazole], has been structurally characterized by X-ray crystallography. The data indicate that the structure of this compound possesses excellent coplanarity. The compounds have arylamines as the donor, and [1,3,4]oxadiazolyl, cyanovinyl or pyridazin-3,6-diyl moiety as the acceptor. Variation of arylamines and pendant alkyl groups was found to have significant influence on σ values. By an appropriate combination of the donor and the acceptor, the σ values of > 103 GM (10-50 cm4s/photon molecule) can be achieved. One quadrupolar molecule possessing arylamine donor and pyridazine acceptor has both high σ value (1442 GM) and σ/MW (1.97 GM/g). Part B. Luminescent Iridium(III) Complexes New phenylimidazoles (CN) have been synthesized. These compounds readily undergo cyclometalation with iridium trichloride, to form bis- or facial tris-cyclometalated iridium complexes, (C^N)2Ir(acac) and Ir(C^N)3 (C^N is the cyclometalated CN). All of these complexes are phosphorescent both at room temperature and 77 K, and the solution quantum yields range from 0.01 to 0.33. All of the complexes Ir(C^N)3 have higher solution quantum yields than (C^N)2Ir(acac), while the latter have more prominent vibronic feature than the former. Complexes containing a pyrenyl moiety have much lower solution quantum yields than their congeners due to the aggregation of the pyrenyl moiety. Part C. Self-Assembly Supermolecules Highly emissive conjugated compounds containing pyridine (or pyrimidine) and cyano ligands have been synthesized by palladium-catalyzed cross-coupling reaction. These ligands readily react with Re(CO)3(THF)2Br to form cyclic supramolecules by self-assembly processes. At room temperature these supramolecules are emissive, and the emission is ligand-localized, as evidenced from the Stokes’ shift and the lifetime data.

延伸閱讀