透過您的圖書館登入
IP:3.19.56.45
  • 學位論文

新日本靈芝、環紋靈芝純培養菌絲體之生理性狀及核醣體DNA定序之研究

Cultural, Physiolocal and Ribosomal DNASequencing Studies ofGanoderma neojaponicumand G. zonatum

指導教授 : 葉增勇
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


無資料

並列摘要


Ganoderma neojaponicum was obtained from Taiwan, while G. zonatum was obtained from U. S. A. Hence their pure cultures were used for morphological, physiological studies and ribosomal DNA sequencing analysis. The morphological characters of G. neojaponicum and G. zonatum were both observed as the white color on the mycelial mat’s surface, brown color on the other side, clamped generative hyphae and the appearance of swelling cells in culture. The positive reaction in extracellular oxidases which included laccase and peroxidase, but negative in tyrosinase, indicated G. neojaponicum and G. zonatum belong to white rotting fungi, and showed that they can utilize lignin and cellulose of wood。 The results of physiological tests were shown as follows: 1.Optimum temperature for the mycelial growth of G. neojaponicum was at 24~28℃ on both of MEA and PDA, while G. zonatum was at 32℃ both on MEA and PDA. 2. Optimum pH for the mycelial growth of G. zonatum was 4.6, while G. neojaponicum was not prominent. 3. Glucose concentration at 40~80g/L was the optimum condition for the mycelial growth of G. neojaponicum and G. zonatum. The increasing glucose concentration neither increased nor decreased mycelial growth rate of G. neojaponicum, but decreased mycelial growth rate of the G. zonatum. 4.Starch was the best carbon source for both mycelial growth of G. neojaponicum and G. zonatum. 3. Optimum nitrogen concentration of ammonium nitrate (NH4NO3) was at 0.02N for the mycelial growth of the G. neojaponicum, but at 0.04N for the G. zonatum. Whereas the mycelial growth of G. zonatum was in proportion to the concentration of L-Asparagine (organic nitrogen form) , but not for G. neojaponicum. Sequencing analyses of the ITS1-5.8S-ITS2 ribosomal DNA in G. neojaponicum are 195bp-158bp-201bp and in G. zonatum are 208bp-158bp-195bp respectively. The sequences data showed that G. zonatum was close to G.formosanum 0109 and G. neojaponicum. The phylogenetic relationship tree constructed from their study will aid to realize the molecular evolution among Ganoderma spices.

參考文獻


Chung-Yuh, Zeng-Yung Yeh, and Guey-Jen Lee-Chen. 1996. Analysis of Genetic Diversity of Two Intersterility Groups of Ganoderma australe by DNA Seqoencing.師大生物學報 31(1): 47-53。
Yeh, Z. Y. and Z. C. Chen.1990. Preliminary investigations of Ganoderma australe (subgen. Elfvingia) in Taiwan. 35(2):127-141.
趙書慶,1998。利用核醣體DNA的內轉錄區鑑定蟲草屬真菌。台北醫學院細胞及分子生物研究所碩士論文。
Tseng, T. C. and L. S. Chang. 1988. Studies on Ganoderma lucidum Ⅳ. Production of pectolytic enzymes. Bot. Bull. Acad. Sin. 29:23-32.
Hseu R. S., Wang H. H., Wang H. F. and Moncalvo J. M. 1996. Differention and grouping of isolates of the Ganoderma lucidum complex by random amplified polymorphic DNA-PCR compared with grouping on the basis of internal transcribed spacer sequences. Appl. Environ. Microbio., 62(4):1354-1363.

延伸閱讀