透過您的圖書館登入
IP:18.221.129.19
  • 學位論文

水熱法合成二氧化鈦結構應用於染料敏化太陽能電池

Hydrothermal Synthesis Titanium Dioxide Structure and its Application to Dye-Sensitized Solar Cell

指導教授 : 林俊良
共同指導教授 : 甘廣宙
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用低溫水溶液法製備染料敏化太陽能電池之二氧化鈦電極,首先以射頻磁控濺鍍(RF sputter)法將二氧化鈦晶種層沉積於FTO玻璃基板上,作為成長一維二氧化鈦之成核層,再經由不同成長時間,探討不同晶種層厚度對於對一維二氧化鈦結構之影響。再藉由低溫水溶液法於鍍有二氧化鈦晶種層成長一維二氧化鈦結構,所使用的反應物為四釘氧基鈦Titanium(IV) butoxide混合水溶液。探討不同製程參數對薄膜之晶體結構、表面微結構及光學特性等影響,最後製作成染料敏化太陽能電池,研究染料敏化太陽能電池之特性。 首先以X光繞射儀(XRD)、場發射掃描式電子顯微鏡(FE-SEM)及能量散射光譜儀(EDS)分析晶種層之形貌及其成份含量,由結果可以得知利用射頻磁控濺鍍法所沉積之薄膜成分為二氧化鈦。當晶種層厚度為100 nm,水溶液溶度為1M時,藉由控制反應成長時間與不同後熱處理,製備出高寬比之一維陣列,使工作電極獲得有效最大的吸附面積。透過XRD的分析,不同後熱處理溫度所成長一維二氧化鈦奈米結構均沿著c軸(002)平面為優選取向且呈現Rutile結晶相。經SEM結果得知,隨著退火溫度的增加,二氧化鈦奈米結構分佈越均勻與緻密。再由UV-VIS光譜儀分析後得知,隨著一維二氧化鈦長度增加,其穿透率隨之降低。另外在太陽能電池之特性方面,當一維二氧化鈦長度為2.5um時,DSSC封裝效率可到達3.14 %。

並列摘要


The main purpose in this study is dye-sensitized solar cells (DSSC) that synthesized TiO2 nanorods on photoelectrode. First, the TiO2 seed layer was deposited on FTO structure by the RF sputtering system to study the effect of TiO2 nanorods. The effect of different growth time on TiO2 seed layers have investigated in this study. Second, after the growth seed layer, the FTO substrate with seed layer is immerging in aqueous solution with low temperature, which the aqueous solution of Titanium(IV) butoxide was prepared. The designed TiO2 nanorods were formed by controlling experimental conditions, including seed-layer, process time, solution concentration and temperature. Finally, the DSSC was assembled,and the short-circuit photocurrent; the open-circuit photovoltage, and the power conversion efficiency of DSSC were measured using a I-V measurement system. From XRD,Fe-SEM and EDS result shown that the seed layer composition is TiO2. Control annealing temperature and growth time to get the best aspect ratio of nanorods array, that the electrode can obtain improvement effective absorption areas. The XRD spectra show that TiO2 nanorods array were preferred orientation along the c-axis of (002) plane with rutile phases after annealing. UV-vis transmittance spectra of TiO2 nanorod arrays, the transmittance slightly reduces due to the extremely long length of these nanorods.The dye sensitized solar cell conversion efficiency of 3.14% was obtained for nanorod arrays with 2.5μm lengths.

參考文獻


[54] opal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes,“Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, 10.1021/nl052099j,2005.
[70] Brian E. Hardin1,2, Eric T. Hoke1, Paul B. Armstrong3, Jun-Ho Yum2, Pascal Comte2, Toma’s Torres4, Jean M. J. Fre’chet3, Md Khaja Nazeeruddin2, Michael Gra‥tzel2 and Michael D. McGehee1* “Increased light harvesting in dye-sensitized solar cells with energy relay dyes”, ARTILOES, DOI: 10.1038/NPHOTON.2009.96,2009.
[2] M. A. Green,K. Emery,D. L. King at “Solar cell efficiency tables (version 29)”,pron. Photovoltaics 15,35 (2007)
[3] Westphalen M, Kreibig U, Rostalski J, et al. ” Metal cluster enhanced organic solar cells,” Solar Energy Materials & Solar Cells 61 ( 2000) 97.
[4] Tang C W. ” Two-layer organic photovoltaic cell,” Appl Phys Lett, 48 (1986) 183.

延伸閱讀