透過您的圖書館登入
IP:3.135.183.89
  • 學位論文

應用化學水浴法及濺鍍法製作薄膜太陽能電池之ZnS緩衝層薄膜特性分析

Study on the characteristics for ZnS buffer layer of thin-film PV solar cell fabricated by Chemical Bath Deposition and Sputtering methods

指導教授 : 蔡福人
共同指導教授 : 黃景良(King-Leung Wong)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主要採用化學水浴沉積法(Chemical Bath Deposition,CBD)及濺鍍法(Sputtering)兩種製程方法製備CuInSe2(CIS)太陽能電池之硫化鋅緩衝層薄膜,CBD則分為(1)靜泡溶液反應成膜及(2)攪拌溶液反應成膜兩種成長方式。實驗前兩製程於各別進行前製分析後,先分別於鈉鈣玻璃基板進行硫化鋅薄膜的成長,經分析取得最佳製程參數再鍍製於CIS/Mo/Soda-lime進行堆疊,並藉由四點探針電性分析下量測其p-n二極體特性曲線,以便研判各製程下最佳參數之薄膜是否具備優良的二極體特性以利作為CIS太陽能電池元件之緩衝層。 經實驗分析後發現濺鍍法於製程壓力2.5mtorr、射頻濺鍍功率400W較易於控制薄膜之成膜速率且於兩製程法中能具較均勻緻密及較佳結晶性的薄膜品質。而對於CBD兩成長方式試劑添加濃度則採用前製實驗所獲得理想參數,分別為硫酸鋅0.08mol/L、硫脲0.24mol/L、氨水2mol/L、聯氨1.5mol/L、檸檬酸鈉0.03mol/L。經分析比較後發現,靜泡溶液反應成膜(90℃、30min)薄膜表面品質雖能有優於攪拌溶液反應成膜(80℃、30min)的表現,但於結晶性及成膜速率則較不及攪拌溶液反應成膜的結果,且在光學特性分析上則顯示攪拌溶液反應成膜於兩製程法中能具較佳的表現。經分別與CIS/Mo/Soda-lime堆疊後,電性分析量測下發現,各製程法皆能有效形成p-n接面,其中以攪拌溶液反應成膜(80℃、30min)可得較佳結果,故能確定化學水浴沉積法攪拌溶液反應成膜為較佳的成長CuInSe2太陽能電池硫化鋅緩衝層的製程方法,同時從結果中也顯示化學水浴沉積法在去除攪拌的成膜影響因子之靜泡溶液反應成膜於太陽能電池緩衝層應用也具有其可行性。

並列摘要


This study used chemical bath deposition (CBD) and sputtering two process prepared zinc sulfide buffer layer of a CuInSe2 (CIS) solar cells. CBD process is divided into two methods: (1) static solution reaction film; (2) stirring-mix solution reaction film. Two process completed the individual system analysis the experiment, the ZnS films are firstly grown on soda-lime glass substrate, then the optimal process parameters can be obtained by analysis, then they can be stacked and coated in CIS / Mo / Soda-lime. Then they are measured by four-point probe electrical analysis to obtain p-n diode characteristic curve. So that best parameters of the film in the process can be judged whether they have an excellent diodecharacteristics of buffer layer for CIS solar cells. After experimental analysis, it can be found that the sputtering process pressure with 2.5 mtorr and the RF sputtering power with 400W are easier to control film growth rate with a more uniform and compact crystallinity film quality at the two process methods. As referring previous experiments for CBD methods, the desired parameters with 0.08 mol/L zinc sulfate, 0.24 mol/L thiourea, 2 mol/L ammonia, 1.5 mol/L hydrazine and 0.03 mol/L citric acid sodium, are adopted for the growth mode of reagent concentration. It is found by analyses that film quality performance of static bubble reaction film with (90 ° C, 30min) is better than stirring the solution reaction film with (80 ° C, 30min), but its crystalline film growth rate is worse than that of stirring-mix solution reaction film, and stirring-mix solution reaction film is also with better performance at optical properties analysis. Through the electrical analysis measurement after stack CIS / Mo / Soda-lime, it can be found that all process method can effectively form a p-n junction, among them, stirring-mix solution reaction film with (80 ° C, 30min) can get better results. Thus, it can determine that the CBD with stirring the solution reaction film can obtain the better ZnS buffer layer of CuInSe2 solar cell. From the results also proved that the CBD with static solution reaction film has its feasibility to obtain ZnS buffer layer of CuInSe2 solar cell.

並列關鍵字

ZnS buffer layer CBD Sputtering CuInSe2 thin film solar

參考文獻


[2] J. L. Shay and J. H. Werink, ”Ternary Chalcopyrite Semiconductor Growth, Electronic Properties and Application”,Pergamon, Dxforv,1975.
[3] Michael Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry 164 ,2004, 3–14.
[6] D. Hariskos, S. Spiering and M. Powalla, “Buffer layers in. Cu(In,Ga)Se2 solar cells and modules”, Thin Solid Films, Vol.480-481, 2005, pp.99-109.
[7] Mickelsen, R.A., Chen, W.S., Hsiao, Y.R., Lowe, V.E. IEEE Trans. Electron Devices, 31, 1984, p542.
[8] Hedstrom, J., et al., “ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance” IEEE, 1993, p. 364-371.

延伸閱讀