透過您的圖書館登入
IP:3.145.50.83
  • 學位論文

最佳化熱電致冷器之半導體顆粒結構變化分析

Analysis of Optimum Configuration Change of the Semiconductor Pellets of Thermoelectric Modules

指導教授 : 邱青煌
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是藉由COMSOL多重物理量耦合分析軟體來模擬市售TEC1-12705熱電模塊運作方式,並建立一個三維的熱電致冷器模型。計算的區域為導體串聯的P型與N型半導體顆粒,及覆蓋於上下端的絕緣且導熱的陶瓷板。 此研究中使用熱傳方程式與直流電傳導程式來描述電流流過半導體顆粒後所產生的Peltier、Thomson與Seebeck三熱電效應與溫度分佈。藉由改變半導體顆粒厚度與顆粒截面積的結構因素,並加入冷熱端溫差、電流大小、最大溫度差為操作參數,探討顆粒厚度與截面積大小對性能之影響,而最主要為改變半導體顆粒結構,並探討銅塊有無對顆粒結構之影響。 其結果顯示,顆粒厚度較厚與顆粒截面積較小,亦或是顆粒數較多之模型較符合實際值之運用。改變顆粒結構無銅塊,有較大幅度的最大溫差,但性能無顯著提升,且材料減量不明顯。加入銅塊能則能使性能與材料減量獲得提升,但相對縮小最大溫差的幅度,結果也顯示,加入銅塊且基底為原來之0.5倍,則材料部分可大幅減少,但最大致冷率不如預期,在重視成本考量而較忽略性能方面,則可考慮加入銅塊且基底為原來之1倍,加入銅塊且基底為原來之1.5倍,符合性能提升與材料減量之要求。

並列摘要


The study simulates the influence on the performance of a thermoelectric cooling chip by using finite-element analysis software COMSOL Multiphysics. The simulated data are compared with experimental results for the commercial thermoelectric modules TEC1-12705 manufactured from Bi2Te3. This mathematical model is a three-dimensional, thermoelectric field model which, in addition to DC electricity equation, includes the Joule heating, the Seebeck effect, the Peltier effect, and the Thomson effect. The calculation region has contained the p-type and n-type semiconductor elements and the metallic interconnector which is connected semiconductor elements. A comparison of cooling power curve and COP curve obtained from the present model and the experimental data is made. It can be observed that the agreement is obtained. Consequently, the present model can be used for more extensive simulation. The purpose of this research is to investigate the optimum configuration of semiconductor pellets of thermoelectric modules by the cooling power and COP curves of the thermoelectric devices and the maximum temperature difference curves between cold side and hot side under the geometrical parameters, such as the pellet numbers of modules, the thickness of thermoelectric element . The study focuses on the configuration of the two-stage thermoelectric module, especially investigating the influence of the thickness ratio of two-stage and connector structure on the interface of the stage junction. The result shows that the performance can be improved under the thicker element, the large numbers of thermoelectric pairs and the small cross-sectional area of element. The two-stage junction with copper connector can improve the coefficient of performance and the cooling capacity ,whereas, the two-stage junction without copper connector can increase the maximum temperature difference.

參考文獻


[31]. 鄭憶湘,「以遺傳演算法進行熱電式能源系統之最佳化設計」,國立清華大學,博士論文,民國96年。
[33]. 林昆標,「熱電致冷器之三維暫態模擬分析」,國立成功大學, 碩士論文,民國93。
[1]. S. B. Riffatn and Xiaoli Ma, "Improving the coefficient of performance of thermoelectric cooling systems a review", International Journal of Energy Research, Vol. 28, pp.753-768, 2004.
[2]. S.B. Riffat, Xiaoli Ma, "Thermoelectrics: a review of present and potential applications", Applied thermal Engineering, Vol. 23, pp.913-935, 2003.
[3]. Robin Mccarty, “A Comparison Between Numerical and Simplified Thermoelectric Cooler Models”, Journal of Electronic Materials, Vol.39, pp.1842-1847, 2010.

延伸閱讀