透過您的圖書館登入
IP:18.218.38.125
  • 學位論文

具HfLaTiON電荷捕捉層之前瞻金氧半結構非揮發性記憶體元件特性研究

Memory Characteristics of Advanced Metal-Oxide-Semiconductor Structured Nonvolatile Memory with HfLaTiON as Charge Trapping Layer

指導教授 : 鄭錦隆
共同指導教授 : 鄭錦聰(Jin-Tsong Jeng)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘 要 在此篇論文中, 第一個主題利用Visual Basic (VB) 軟體編寫執行非揮發記憶體元件(Nonvolatile memory: NVM)的遲滯特性、寫入時間(programming time)、抹除時間(erasing time)、耐久力(Endurance)及保持力(Retention)等特性的自動量測系統,藉由整合HP4284A、HP5270B、HP5250及HP81110A波形產生器等量測硬體設備,使操作者減少量測的人為誤差。 第二個主題製作具HfLaTiON電荷捕捉層之前瞻金氧半(MOS)結構非揮發性記憶體元件,改善非揮發性記憶體元件特性,最主要的三大重點為元件(1)操作快速(2)低操作電壓(3)長資料保存時間;為了達成這些目標,此結構以HfLaON當穿隧(tunneling oxide)及阻檔氧化層(Blocking oxide),並利用Hf2La2O7及Ti靶材共同濺鍍HfLaTiON高介電材料當作電荷層補捉層(Charge trapping layer);藉由調整Ti於HfLaTiON的含量及位置的不同,探討其對非揮發性記憶體元件特性研究,實驗結果發現摻雜越多Ti於HfLaTiON層內其遲滯特性越佳,越佳的磁滯特性表示可以降低寫入電壓與抹除電壓,評估寫入及抹除特性時發現摻入適量Ti具有較低寫入電壓及抹除電壓,實驗同時發現Ti位於HfLaTiON之下層有較佳記憶特性包含遲滯電壓、寫入及抹除電壓。

並列摘要


Abstract In this thesis, the development of electrical and reliability properties measurement system for nonvolatile memory devices was achieved by the visual basic (VB) software. The electrical and reliability properties include hysteresis, programming time, erasing time, endurance and retention. To avoid the personal errors, automatically measurement systems integrated with HP4284A, HP5270B, HP5250, and HP81110A instruments were developed. Memory characteristics of advanced metal-oxide-semiconductor structured nonvolatile memory with HfLaTiON as charge trapping layer were investigated. The continuous improving non-volatile memory performances are needed for faster speed, lower operation voltage and longer data retention. To achieve this goal, the HfLaTiON dielectric as charge trapping layer was used to improve the data retention. The lower operation voltage is obtained by using HfLaON as tunneling oxide. The fast speed, especially for the slow erase speed, was improved by using HfLaO/HfLaTiON/HfLaO stacked films. By modulated Ti concentrations and position in HfLaTiON dielectric embedded in HfLaON dielectric, the high-quality HfLaTiON charge trapping layer can be achieved for the nonvolatile memory (NVM) devices applications. The results indicate that the hysteresis characteristic, programming/erase time enhanced by the increases of the Ti concentrations incorporated into HfLaTiON dielectric and Ti embedded into the underneath of HfLaTiON.

參考文獻


[18]. C. C. Lin, T. C. Chang, C. H. Tu, W. R. Chen, C. W. Hu, S. M. Sze, T. Y. Tseng, S. C. Chen, and J. Y. Lin “Improved reliability of Mo nanocrystal memory with ammonia plasma treatment” APPLIED PHYSICS LETTERS 94, (2009) pp. 062106.
[1]. S. W. Ryu, J. W. Lee, J. W. Han, S. Kim, and Y. K. Choi “Designed Workfunction Engineering of Double-Stacked Metal Nanocrystals for Nonvolatile Memory Application” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 56, NO. 3, MARCH (2009) pp. 377–382.
[2]. S. M. Sze and J. C. Lou, Y. C. Yu and J. Y. Lin, U. S. Chen and P. H. Yeh, P. T. Liu, T. C. Chang, F. M. Yang, “Nickel nanocrystals with HfO2 blocking oxide for nonvolatile memoryapplication” APPLIED PHYSICS LETTERS 90, (2007) pp. 222104.
[3]. C. L. Cheng, C. W. Liu, K. S. Chang-Liao, P. H. Tsai, J. T. Jeng, S. W. Huang, B.T. Dai, “Characterization of CoxNiyO hybrid metal oxide nanoparticles as charge trapping nodes in nonvolatile memory devices,” Solid-State Electron 52 (2008) pp. 1530–1535.
[4]. N. Derhacobian, Shane C. Hollmer,N. Gilbert, and M. N. Kozicki “Power and Energy Perspectives of Nonvolatile Memory Technologies” 98, No. 2, February (2010) pp. 283–298.

延伸閱讀