透過您的圖書館登入
IP:3.235.243.45
  • 學位論文

仿生人形機器人系統的步態分析與控制

The Walking Gait Simulation and Control of Biomimetic Humanoid Robot System

指導教授 : 黃運琳
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


步態規劃是仿生人形機器人領域的一個重要課題。它是明瞭兩足穩定行走的理論基礎和關鍵技術。因此,步態和雙足機器人的控制是本文的主要目的。首先,從附著在機器人腰部的基礎座標系轉移到附著在機器人踝關節的位置關係可以通過基於Denavit-Hartenberg(DH)定義與正向運動學分析獲得之。接著提出軌跡規劃方法通過擺線曲線插值來實現平穩行走。然後雙足機器人的全部關節角度可以藉由步行軌跡使用逆向運動學分析獲得之。在本文中,我們參考一些文獻,介紹有關零力矩點(ZMP)和動力學方法來分析人形機器人的運動學和動力學分析。對於利用機器人的雙足行走的慣性以及上半身的主要物質性質的考慮,將以一個桌車模型的ZMP軌跡用來計算質量中心(CoM)軌跡的雙足機器人。此外,ZMP預覽控制器是專為桌車模型設計來跟踪所需的ZMP軌跡。最後,由三維建模軟體來設計一個Bioloid人形機器人的機構。通過使用RecurDyn/Control和MATLAB/ Simulink的協同仿真的方法,我們從事人形機器人的運動學和動態分析。模擬結果顯示,我們的演算法可以有效地提高人形機器人的穩定性.

並列摘要


The gait planning is an important topic in the field of humanoid robots. It's the theoretical basis and key technology to realize stable biped walking. Therefore, the gait pattern and control of biped robot are the main objectives of this thesis. Firstly, the relations transferring from the base coordinate that attached at the waist of robot to the position and the orientation of the ankle joint is obtained by forward kinematics based on Denavit-Hartenberg (D-H) formulation. Then, trajectory planning method is proposed to achieve smooth walking through a cycloid spline interpolation. After that, all the joint angles of the biped robot can be obtained through the walking trajectory by using inverse kinematics. In this investigation, we also used some reference documents to introduce about Zero-Moment Point (ZMP) and dynamics methods to analyze the kinematics and dynamics of humanoid robot. For utilization of the inertia of the biped walking of the robot, taking the consideration of the character of the main mass of the upper-body, the ZMP trajectory of a cart-table model will be used to calculate the Center of Mass (CoM) trajectory of the biped robot. Moreover, the ZMP preview controller is designed for the cart-table model to track a desired ZMP trajectory. Finally, the structure of a Bioloid humanoid robot will be designed by a three dimension modeling software. Through co-simulation method implemented by using RecurDyn/Control and MATLAB/Simulink, we analyze the kinematics and dynamics of the humanoid robot. The simulation results display that our algorithms can efficiently enhance the stability of the humanoid robot.

參考文獻


[8] S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara and H. Hirukawa. (2006), Biped Walking Pattern Generator allowing Auxiliary ZMP Control, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2993-2999, Beijing, China.
[14] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi and H. Hirukawa. (2003), Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point, Proceedings of IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1620-1626.
[47] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi and K. Tanie. (2010), Planning Walking Patterns for a Biped Robot, IEEE Transactions on robotics and Automation, Vol. 17, No. 3, pp. 280-289.
[1] G. Taga. (1995), A model of the neuro-musculo-skeletal system for human locomotion II. Real-time adaptability under various constraints. Biol. Cybern. Vol. 73, pp. 113-121.
[2] S. Aoi and K. Tsuchiya. (2006), Bifurcation and chaos of a simple walking model driven by a rhythmic signal. International Journal Non-Linear Mechenism, Vol. 41, pp. 438-446.

被引用紀錄


梁祐誠(2017)。雙足機器人行走軌跡規劃與平衡控制設計〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0028-1008201717103700

延伸閱讀