透過您的圖書館登入
IP:3.145.156.46
  • 學位論文

含摩擦力補償之奈米級循跡控制法

Friction Compensation for Nanoscale Tracking Control Method

指導教授 : 沈金鐘
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在機械控制系統中,幾乎都會有摩擦力的產生,而此現象會影響到控制系統的性能,尤其在精度與準度要求較高的系統中,其影響更為明顯,因此無法完全忽略其存在。為了減少摩擦力所產生的影響,本研究論文選擇建立摩擦力模型,以此模型對系統做補償的動作。本研究論文將探討以Maxwell slip模型為基礎的反摩擦力模型,並且使用六自由度奈米級移動平台為實驗機台,搭配上比例積分微分(PID)控制器以及順滑模態(Sliding-mode)控制器,以驗證摩擦力補償的狀況。首先將建立Maxwell slip模型,然後將機械系統的動態模型考慮進來,經整理後可推導出包含Maxwell摩擦力模型及系統動態模型的反模型,此反模型之輸入為期望之位移,前饋控制器輸出為達到期望位移所需的力量,因此可作為系統的摩擦力補償。此模型為非線性,因此要求取最佳的模型參數有其困難度,本文利用雙層式的最佳化方式來求取其參數,第一層利用基因演算法求取非線性的參數,取得非線性部分後再利用第二層的最小平方法來求取整個反模型的最佳參數。最後將其使用至系統中,並透過設計好的PID控制器與Sliding-mode 控制器,經由循跡的方式,來驗證補償摩擦現象的效能。

並列摘要


In the mechanical control system, there exist friction force, and it can degrade the performance of the control system. Especially in high-precision system, the effect of friction can’t be ignored. To overcome the effects of friction, the best way is to establish a friction model of the system and use this model to compensate the system. In this paper, the Maxwell slip model based inverse friction model is proposed. This inverse model takes both the system dynamics and friction force into account. For estimating the parameters of this model, a two-phase hybrid optimization scheme is used. The first phase utilizes Genetic Algorithm-based optimization and the second phase utilizes Minimized Least Square method. Finally, the inverse model used the feed forward controller in combination in combination with PID controller and Sliding-mode controller as the feedback controller in used to control a linear guide way supported stage to demonste the performance of the proposed method.

參考文獻


[31] 吳家鴻,(2007),六軸奈米量測機平台之研製,國立成功大學機械工程研究所 碩士論文。
[5] 李傑仁,(2003),具非對稱型磁滯系統控制及其於壓電驅動平台定位控制之應用,國立成功大學航空太空工程研究所 碩士論文。
[36] Richard C. Dorf and Robert H. Bishop, (2005), Modern Control Systems, 10th Edition, NJ:Pearson Education.
[2] Yongdae Kim, Byounguk Sohn, Woosub Youm, Jongkyu Jung, Jonghyun Lee, and Kyihwan Park, (2008), Voice Coil Motor Nano Stage with an Eddy Current Damper, 10th Intl. Conf. on Control, Automation, Robotics and Vision Hanoi, Vietnam.
[3] Sebastian Polit, Jingyan Dong, (2011), Development of a High-Bandwidth XY Nano positioning Stage for High-Rate Micro-/Nanomanufacturing, IEEE/ Asme Transactions on Mechatronics, vol.16, no.4, pp.724-733.

延伸閱讀