透過您的圖書館登入
IP:44.222.231.51
  • 學位論文

以不同表面處理方式提昇氮化銦鎵/氮化鎵藍色發光二極體之效能

Improved Efficiency for InGaN/GaN Light-emitting Diodes Using New Window Layer

指導教授 : 楊奇達 雷伯薰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來藍色發光二極體已被廣泛的應用於指示燈、白光照明系統、平面顯示器和其他光電元件。然而氮化鎵的激子束縛能較低,導致光強度無法有效的轉換,因此無法在低操作電流條件下產生高亮度的白光二極體。為了解決這個問題,本篇論文中,研究對於氮化銦鎵/氮化鎵發光二極體的出光層進行不同方式的表面處理以提昇發光二極體的萃取效率,使用排水法在氧化銦錫窗層或氧化鋁基板上成長自組裝之聚苯乙烯光子晶體微球,其中在氧化銦錫窗層形成光子晶體微球之元件主要應用於傳統封裝。利用排水法成長光子晶體奈米結構具有成本低廉及製程速度快等優點;當入射光通過光子晶體微球,可增加入射角的光量,減少高折射率所產生的全反射現象,提昇元件的外部量子效率。最後我們將最佳化結構引入氮化銦鎵/氮化鎵藍色發光二極體中進行光特性的量測並確認相關方法的可行性。 本論文中,以排水法自組裝聚苯乙烯奈米球具有不需使用大型或昂貴的儀器設備、簡易組裝有序的三維奈米球構造。然而以排水法自組裝奈米球其中奈米球的濃度、排水速率及基板表面處理皆會影響奈米球的排列,我們將做一系列的研究。接著,我們以Opti-FDTD軟體模擬奈米球於發光二極體上的發光效率,由模擬結果發現有效的改變奈米球直徑及大小可有效增加發光效率。實驗部分,先於發光二極體上自組裝單層排列奈米球,藉由調整反應式離子蝕刻機通入氧氣時間以改變奈米球的直徑和間距,並當奈米球直徑和間距皆為100奈米時,於驅動電流20mA下量測,其發光效率可增加38%,此部分與模擬結果符合。

並列摘要


In recent years, the blue light-emitting diodes have been widely used indicator, white lighting systems, flat panel displays and other optoelectronic components. However, GaN exciton binding energy is low, resulting in the conversion of light intensity can not be effective, and therefore can not produce high-brightness white light diodes at low operating current conditions. To solve this problem, this paper studied the InGaN / GaN light-emitting diode light layer of surface treatment in different ways to enhance the extraction efficiency of light-emitting diodes, drainage method using indium tin oxide since the growth of the photonic crystal polystyrene microspheres assembled on an alumina substrate or the window layer, wherein the window layer of indium tin oxide microspheres are formed in the photonic crystal device is mainly used in conventional packages. Use water method photonic crystal nanostructures grown with low cost and process advantages of speed; when the incident light through photonic crystal ball, increase the amount of light incident angle, reducing the total reflection phenomenon generated by a high refractive index, enhance external components quantum efficiency. Finally, we will optimize the amount of structure into InGaN / GaN blue light-emitting diodes in the optical properties of the measured and confirmed the feasibility of related methods. In this thesis, in order to drain the self-assembly method without the use of polystyrene nanospheres with a large or expensive equipment, simple assembly ordered three - dimensional spherical structure. However, with the drainage method in which self-assembled nanospheres nanospheres concentration, drainage rate and substrate surface treatment will affect their nanospheres arrangement, we will do a series of studies. Then, we Opti-FDTD simulation software nanospheres luminous efficiency on light-emitting diodes, the simulation results show that effective change nanospheres can effectively increase the diameter and size of the luminous efficiency. Experimental section, the first light-emitting diodes on the self-assembled monolayer nanospheres by adjusting the reactive ion etching leads to oxygen nanospheres time to change the diameter and spacing, and when the ball diameter and pitch are nano 100 nanometers is, for driving under the measured current of 20mA, the luminous efficiency can be increased by 38%, in line with the simulation results in this section.

參考文獻


[48] 銀奈米結構增益發光元件出光效率之研究 大同大學 彭凱鈺
[24] 謝宏健,2008年,“以奈米小球提升矽薄膜太陽能電池吸收之研究”,國立中央大學光電科學研究所。
[27] 李明龍,2009年,“利用光子晶體增強薄膜式太陽能電池之吸收效率”,國立成功大學機械工程研究所。
[1] S.Nakamura, T. Mukai, and M. Senoh,“P-GaN/N-InGaN/N-GaN Double -Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol.32, pp. L8-L11 (1993).
[5] G.M. Wu , Z.J. Cai, J.C. and Wang, T.E. Nee 2005, “Design and simulation in GaN based light emitting diodes using focused ion beam generated photonic crystals”, IEEE Photonics Technology Letters, VOL. 17, NO. 5, MAY

延伸閱讀