透過您的圖書館登入
IP:18.117.183.172
  • 學位論文

奈米粒子應用於NAD(P)H: 醌氧化還原酶1、銀離子與鎘離子檢測

Applications of Nanoparticles for NAD(P)H: quinone oxidoreductase isozyme 1, Ag+ and Cd2+ Detection

指導教授 : 吳淑褓

摘要


(一) 醌修飾之摻雜錳離子硫化鋅量子點為NAD(P)H: 醌氧化還原酶1感測探針 在摻雜錳離子硫化鋅量子點(ZnS(Mn2+) QDs)表面修飾醌衍生物,使磷光淬息,得到NAD(P)H: 醌氧化還原酶1 (NQO1) 感測探針(Q-ZnS(Mn2+) QDs)。探針表面上的醌衍生物與NQO1反應,被還原成氫醌後,從探針表面離去,中止光誘導電子轉移 (photo-induced electron transfer, PET),啟動磷光放射機制,以偵測NQO1的存在。從NQO1酵素動力學實驗結果,顯示NQO1對Q-ZnS(Mn2+) QDs有良好的反應活性,並可從磷光生成速率定量NQO1的濃度。Q-ZnS(Mn2+) QDs對於細胞有極低的生物毒性,可用於NQO1表現過量的細胞顯影實驗,並檢測出NQO1表現於細胞質與細胞核。成功發展了一個具有高選擇性與高靈敏度的NQO1感測探針,可用於偵測NQO1表現過量的人類腫瘤細胞。 (二) 腺嘌呤修飾之金奈米粒子應用於銀離子檢測 設計金奈米粒子表面修飾腺嘌呤衍生物(N-1-(2-mercaptoethyl)adenine),做為銀離子的感測探針(MEA-AuNPs)。MEA-AuNPs對銀離子檢測有專一性,銀離子會導致MEA-AuNPs聚集,使金奈米水溶液的顏色從酒紅色轉變成藍紫色。MEA-AuNPs檢測銀離子適用於pH 6-9的水溶液,其偵測極限為 3.3 nM。從核磁共振光譜可以得知銀離子與腺嘌呤(adenine)有良好的交互作用,使得MEA-AuNPs對於銀離子檢測有優異的選擇性與高靈敏。MEA-AuNPs的銀離子檢驗,不會受到其他金屬離子的影響,可用於真實湖水中的微量銀離子檢測,得回收率為95.3-103.5% ,因此MEA-AuNPs可適用於複雜環境的微量銀離子檢測應用。 (三) 二吡咯甲硫酮修飾之金奈米粒子為高靈敏鎘離子感測探針 二吡咯甲硫酮修飾金奈米粒子(DP-AuNPs)是一個新型高靈敏度與專一性的鎘離子感測探針。在含有鎘離子的樣品中,DP-AuNPs發生聚集現象,金奈米水溶液顏色,從酒紅色轉變成藍紫色,從紫外-可見光光譜圖可知吸收峰從波長520 nm紅位移至波長 635 nm,其偵測極限達至16.6 nM。DP-AuNPs對鎘離子有專一性。DP-AuNPs對於鎘離子有很好的配位能力,不會受到其他金屬離子的影響,所以適用於複雜的水溶液樣品檢測鎘離子,其適合偵測pH範圍為4-9.5的水溶液中,可用於檢測真實湖水樣品微量鎘離子,並展現其良好檢測結果。

並列摘要


(1) Quinone modified Mn-Doped ZnS Quantum Dots for Room Temperature Phosphorescence sensing of NQO1 A new room-temperature phosphorescence NAD(P)H: quinone oxidoreductase isozyme 1 (NQO1) sensor was developed by using quinone-modified Mn-doped ZnS quantum dots (Q-ZnS(Mn2+) QDs). It can selectively detect NQO1 in vitro and vivo through phosphorescence generated by reduction-initiated removal of quinones on its surface with NQO1. Enzyme kinetics of NQO1 was measured by phosphorescence enhancement of Q-ZnS(Mn2+) QDs revealed its highly catalytic activity towards Q-ZnS(Mn2+) QDs. High viability of cells in presence of Q-ZnS(Mn2+) QDs showed the low cytotoxicity to A549 cells from MTT assay. Therefore, Q-ZnS(Mn2+) QDs can be applied to detect NQO1 which is overexpressed in cytoplasma and nucleus of cancer cells. We successfully developed a highly selective room-temperature phosphorescent probe to detect the human cancer cells with the overexpressed NQO1 (2) Highly selective and sensitive colorimetric detection of Ag(I) using N-1-(2-mercaptoethyl)adenine functionalized gold nanoparticles A sensitive and selective colorimetric Ag+ detection method was developed by using N-1-(2-mercaptoethyl)adenine functionalized gold nanoparticles (MEA-AuNPs). The presence of Ag+ immediately induced aggregation of MEA-AuNPs, yielding a color change from wine-red to purple. This Ag+-induced aggregation of MEA-AuNPs was monitored by bare eye and UV-vis spectroscopy with a detection limit of 3.3 nM. MEA-AuNPs showed excellent selectivity toward Ag+ compared with other metal ions through interaction between adenine and Ag+. The best detection of Ag+ was achieved at pH 6-9. Furthermore, MEA-AuNPs were applied to detect Ag+ in lake water with low interference. (3) Colorimetric detection of Cd(II) ions based on di(1H-pyrrol-2-yl)methanethione functionalized gold nanoparticles A sensitive and selective colorimetric Cd2+ detection method was developed using di(1H-pyrrol-2-yl)methanethione functionalized gold nanoparticles (DP-AuNPs). Aggregation of DP-AuNPs was induced immediately in the presence of Cd2+, yielding a color change from wine-red to purple. This Cd2+-induced aggregation of DP-AuNPs was monitored using the naked eye and UV-Vis spectroscopy with a detection limit of 16.6 nM. The DP-AuNPs showed excellent selectivity toward Cd2+ compared to other metal ions through the interaction between di(1H-pyrrol-2-yl)methanethione and Cd2+. Optimal detection of Cd2+ was achieved over a pH range from 4 to 9.5. Furthermore, DP-AuNPs were applied to detect Cd2+ in lake water, showing low interference.

參考文獻


35. Nakamura, M.; Hayashi, T., J Biochem. 1994, 115, 1141-1147.
87. Orimo, H.; Shiraki, M.; Hayashi, Y.; Hoshino, T.; Onaya, T.; Miyazaki, S.; Kurosawa, H.; Nakamura, T.; Ogawa, N., Calcif Tissue Int 1994, 54, 370-376.
96. Yang, Y.; Cheng, T.; Zhu, W.; Xu, Y.; Qian, X., Org. Lett. 2011, 13, 264-267.
72. Pandey, M. D.; Mishra, A. K.; Chandrasekhar, V.; Verma, S., Inorg. Chem. 2010, 49, 2020-2.
68. Mishra, A. K.; Prajapati, R. K.; Verma, S., Dalton Trans. 2010, 39, 10034-10037.

被引用紀錄


王勝輝(2014)。應用動機再促進方案於精神分裂症患者之成效研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.00776
Li, C. Y. (2008). 動態人樹房子電腦化計分系統的適用性與心理計量之研究–以台灣精神疾病患者為例 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2008.03019
喬慧燕(2005)。中文版加拿大職能表現測驗效度驗證〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2005.02910
王淑敏(2004)。中文版「職能自我評估」之心理計量品質研究 --以台灣精神分裂症個案為例〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2004.02428
鄭進清(2016)。褚氏日常生活評量表應用於思覺失調症 個案之心理計量特性分析〔碩士論文,中山醫學大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0003-2308201622481400

延伸閱讀